

COMPLEX EVENTS Руководство пользователя

Версия 1.6

Москва 2022 г.

ОГЛАВЛЕНИЕ

1. 2. 3. 4.	ИСТОРИЯ ИЗМЕНЕНИЙ БЫСТРЫЙ СТАРТ ВНЕШНИЙ ВИД СОЗДАНИЕ И РЕДАКТИРОВАНИЕ ПРОГРАММЫ	.3 .4 .7 .8
	4.1 Общие сведения 4.2 Описание элементов блок-схемы	. 8 . 8
	4.2.1 Блоки «Начало» и «Конец» 4.2.2 Блок «Действие» 4.2.3 Блок «Условие»	. 8 . 9 . 9
	4.3 Создание блок-схемы 4.4 Описание элементов схемы функциональных блоков	10 11
	4.4.1 Константы и переменные 4.4.2 Функциональные блоки	11 12
	4.5 Создание схемы функциональных блоков 4.6 Элементы описания схемы	12 14
	4.6.1 Название и Описание блока 4.6.2 Текст 4.6.3 Прямоугольник	14 14 14
	4.7 Отмена и повторение действий (Undo/Redo) 4.8 Автоматическая нумерация функциональных блоков 4.9 Поиск переменных 4.10 Работа с файлами	15 15 15 16
5. 6.	СБОРКА ПРОГРАММЫ ОТЛАДКА ПРОГРАММЫ	17 18
	6.1 Запуск отладки 6.2 Подключение отладчика к работающей программе 6.3 Работа в режиме отладки	18 18 18
	6.3.1 Строка состояния программы 6.3.2 Управление исполнением программы 6.3.3 Просмотр значений данных схемы 6.3.4 Время исполнения цикла программы	19 19 19 19
	6.4 Загрузка и чтение программы без отладки	20
7.	НАСТРОЙКИ	21
	7.1 Основные настройки 7.2 Настройки отладки 7.3 Цветовая схема	21 21 21
8.	ПРИЛОЖЕНИЯ	22
	8.1 Сочетания клавиш 8.2 Список кодов событий Complex Events 8.3 Библиотека функциональных блоков	22 22 23
	 8.3.1 Общие инструкции 8.3.2 Математические инструкции	26 28 31 32 35 36 39 44

8.3.9 Функции доступа к периферийным устройствам	52
8.3.10 Функции доступа к цифровым портам	56

1. ИСТОРИЯ ИЗМЕНЕНИЙ

Версия 1.0 от 14.10.2021:

• Первая версия документа.

Версия 1.1 от 16.11.2021:

- Добавлен раздел «Описание блоков блок-схемы»;
- Добавлен блок «FROM_FLOAT»;
- Добавлен блок «CALENDAR»;
- В разделе «Цветовая схема» добавлено описание новых функций.

Версия 1.2 от 23.11.2021:

- Добавлено описание режима drag'n'drop для перемещения блоков и функций на схему;
- Добавлен раздел с описанием операций Undo/Redo.

Версия 1.3 от 15.12.2021:

- Добавлен раздел «Элементы описания схемы»;
- В разделе «Настройки отладки» добавлено описание новой настройки;
- Добавлена функция «DELAY»;
- Добавлена функция «NTC_CRASH_FILE»;
- Дополнено описание функции «NTC_ACCEL»;
- Дополнено описание функций «TO_FLOAT» и «FROM_FLOAT».

Версия 1.4 от 25.01.2022:

- Исправлено описание функции «ТР»;
- Дополнено описание функций «EVENT», «SMS», «CALL», «CAM»;
- Добавлена функция «USER_SMS»;
- Добавлена функция «RECV_SMS»;
- В разделе «Список кодов событий Complex Events» удалены неиспользуемые события;
- В разделе «Библиотека функциональных блоков» переименованы блоки из группы «Блоки доступа к периферийным устройствам»;
- Добавлена функция «PWRSAVE».

Версия 1.5 от 07.04.2022:

- Изменено описание в разделе «Общие сведения»;
- Добавлен раздел «Описание элементов схемы функциональных блоков»;
- Обновлено описание функций «TO_FLOAT», «FROM_FLOAT», «FLEX», «USER_PARAM», «USER_SMS», «OUTPUT";
- Добавлены функции «APERTURE», «RXD_GET», «RXD_CMP», «RXD_STR2INT», «RXD_STR2FLOAT», «RXD_CHECKSUM», «TXD_INIT», «TXD_SET», «TXD_SET», «TXD_CHECKSUM», «TXD_GET», «RS_TRANS», «RS_SEND», «RS_RECV».
- Добавлен раздел «Функции доступа к цифровым портам».

Версия 1.6 от 21.06.2022:

- Дополнено описание в разделе "Создание схемы функциональных блоков";
- Добавлен раздел "Автоматическая нумерация функциональных блоков";
- Добавлен раздел "Поиск переменных";
- Обновлено описание функции "FLEX", "RXD_GET", "TXD_SET", "TXD_GET";
- Добавлена функция "INFO", "IMEI", "ICCID", "IMSI", "LOG_MSG", "MODBUS_READ", "MODBUS_WRITE";
- Обновлены стили информационных рамок.

2. БЫСТРЫЙ СТАРТ

Напишем простую программу, увеличивающею значение переменной на 1.

Для этого:

- 1. Подключите устройство с поддержкой Complex Events.
- 2. Запустите конфигуратор.
- 3. Создайте новую конфигурацию (нажмите на кнопку Создание новой конфигурации).

MTC Configurator 3.1.7 (build 1)		-
		■ 🖗 ? 😢
Тип устройства: S-2435 BHR: 189A1	IMEI устройства:	Подключение: USB (СОМ4)
Версия прошивки: 03.02.04 от 08.10.21		Длительность сеанса связи: 04:56:11

Рисунок 2.1 – Создание новой конфигурации

- 4. Перейдите на вкладку Complex Events.
- 5. Установите галочку Использовать Complex Events и нажмите на кнопку Открыть окно Complex Events.

🛞 S-2435: Device									- 🗆	×
семпературы 1-Wire	Входные линии	Акселерометр	Выходные линии	Абоненты	Ключи TouchMemory	Режимы охраны	EcoDriving	Bluetooth	Complex Even	ts 🔹 🕨
			2	🗸 Использоват	гь ComplexEvents					
			0							
				Открыть окно	o ComplexEvents					
			<u> </u>							
				Перейти в	упрощённый режим					
Сохранить в файл	Загрузить в устройство	o	<< Предыдуща	ая страница	Выбрать 🔻 Следующ	ая страница >>		Закрыть	поп	ющь

Рисунок 2.2 – Запуск редактора Complex Events

- 6. Далее в открывшемся окне выберите пункт меню *Файл Новый* (или нажмите на кнопку ^[2] на панели инструментов). В редакторе блок-схемы, в левой части редактора появится простейшая блок-схема.
- 7. Нажмите на блок *Действие* в левой части редактора. В правой части редактора теперь будет отображаться содержимое выбранного блока *Действие*.

🚯 Новый	-	- 🗆	×
Файл Правка Вид Сборка Отладка Справка			
🕜 🎾 🔚 ≽ 🍢 前 🗶 🙀 🔅 5-2435 🔹			
Масштаб 80 % 🜩 🚛 # => Масштаб 80 % 🜩			
^ 🕞 С Константа V Переменная			
Действие			
и Условие			
Спорти Страна Спорти			
\$-2435			

Рисунок 2.3 – Создание новой, простейшей блок-схемы

- 8. Выберите вкладку Функции на панели в средней части редактора.
- 9. В отобразившемся окне функций нажмите на кнопку *ADD* в группе *Математические операции*. Затем переместите указатель мыши на правую часть редактора и нажмите в любое место. В редакторе появится функция *Сложение*.
- 10. Нажмите на кнопку *Переменная*, переместите указатель мыши на правую часть редактора и нажмите на свободное место.
- 11. Нажмите на кнопку *Константа*, переместите указатель мыши на правую часть редактора и нажмите на свободное место.
- 12. Измените значение константы на 1. Для этого, выполните двойной щелчок по константе и в открывшемся диалоговом окне в поле *Значение* введите число 1.
- 13. Расположите добавленные элементы (рис 2.4) и соедините их. Чтобы соединить два вывода, нужно нажать левой клавишей мыши на первый вывод, затем нажать на второй вывод.

Рисунок 2.4 – Диаграмма инкрементации переменной var_1 на 1

- 14. Выберите пункт меню *Сборка Собрать* (или нажмите на кнопку 🛍 на панели инструментов). Если всё сделано правильно, программа соберётся без ошибок.
- 15. Выберите пункт меню *Отладка Отладка* (или нажмите на кнопку ж на панели инструментов). Если устройство подключено, появится окно с предложением загрузить конфигурацию в устройство, нажмите на кнопку *Да*. Ожидайте несколько секунд, пока устройство не перезагрузится, затем приложение автоматически загрузит программу и войдёт в режим отладки.
- 16. Нажмите несколько раз на кнопку *Шаг* . (пункт меню *Отладка Шаг*) и убедитесь, что значение переменной увеличивается на 1. Текущее значение переменной отображается над её выводом.
- 17. Нажмите на кнопку Продолжить (пункт меню Отладка Продолжить) и убедитесь, что значение переменной увеличивается.
- 18. Нажмите на кнопку Завершить отладку 🛛 (пункт меню Отладка Завершить отладку).

Рисунок 2.5 – Отладка программы

3. ВНЕШНИЙ ВИД

Приложение разделено на следующие области: основное меню, панель инструментов, статусная панель, основная область.

Основное меню содержит опции для манипуляции с приложением.

Панель инструментов дублирует наиболее часто используемые пункты меню, может быть скрыта (пункт меню *Вид – Панель инструментов*).

Статусная панель отображает информацию о подключённом устройстве и ресурсы необходимые для работы проекта.

Основная область приложения включает:

- Редактор блок-схемы проекта.
- Редактор схемы функциональных блоков (функций) для конкретного блока блок-схемы.
- Панель с элементами для создания схемы проекта (между редакторами).
- Дополнительные вкладки ошибки, вывод сборки, точки останова (отображение управляется через меню *Вид*).

Новый*		– 🗆 X
Файл Правка Вид Сборка	а Отладка Справка Основное меню	
🗹 🎾 🔜 ≽ 💈	🛓 🟟 🚖 🙀 🏟 S-2435 🔹 Панель инструментов	
Масштаб 80 % 🖨	<= # => Масштаб 80 % 🗘	
Старт В Редактор блок-схемы Конец	С Константа Геременная Блоки Функции Переменные Фильтр Элементы Для создания ФОЛЬТ Элементы Для создания ФОЛЬТ, Элементы Для создания <th>(емы)</th>	(емы)
	• логические операции	
3-2430		

Рисунок 3.1 – Внешний вид редактора

4. СОЗДАНИЕ И РЕДАКТИРОВАНИЕ ПРОГРАММЫ

4.1 Общие сведения

Схема программы, загружаемой в устройство, составляется с помощью графических элементов.

Сначала, в редакторе в левой части приложения, составляется общая блок-схема. Блок-схема – это общий алгоритм работы программы, который состоит из блоков (*шагов*), соединённых между собой линиями, указывающими направление последовательности исполнения программы. Поддерживаются следующие блоки:

- Старт обозначает начало программы, всегда присутствует на блок-схеме в единственном экземпляре.
- Конец обозначает конец программы, всегда присутствует на блок-схеме в единственном экземпляре.
- Действие блок обработки данных.
- Условие блок обработки данных с условием, позволяет продолжить работу программы в одном из двух направлений. Данный блок позволяет изменять последовательность исполнения программы, для программирования условий и циклов.

Рисунок 4.1 – Внешний вид блоков Старт, Действие, Условие, Конец

Начиная от блока *Старт*, блоки исполняются друг за другом в определённой пользователем последовательности (с помощью линий). Достижение программой блока *Конец* – означает конец обработки данного цикла. Циклы бесконечно выполняются друг за другом, от блока *Старт* до блока *Конец*.

В правой части редактора составляется схема обработки данных для конкретного блока (*Действия* или Условия) из левой части. Данная схема состоит из соединённых между собой функциональных блоков (функций), констант и переменных.

Рисунок 4.2 – Внешний вид элементов Константа, Функция и Переменная

Схема функциональных блоков по своей сути похожа на язык программирования CFC (Continuous Function Chart), который предназначен для программирования ПЛК (программируемых логических контроллеров).

4.2 Описание элементов блок-схемы

4.2.1 Блоки «Начало» и «Конец»

Блоки обозначают начало и конец программы. Присутствуют на схеме в единственном экземпляре и не могут быть удалены.

4.2.2 Блок «Действие»

Блок используется для описания одной или нескольких функций. У блока есть один вход и один выход, которые позволяют разместить его на блок-схеме и показывают направление движения программы.

После выполнения последней функции блока *Действие* программа переходит к выполнению блока, который подключен к выходу.

Рисунок 4.3 – Пример включения блока Действие в блок-схему

4.2.3 Блок «Условие»

Блок используется для описания ветвления программы в зависимости от заданных пользователем условий. Как и в блоке *Действие* внутри блока *Условие* производится описание одной или нескольких функций. У блока есть один вход и два выхода: «Выход +» и «Выход -», которые позволяют разместить его на блок-схеме и показывают направление движения программы.

Рисунок 4.4 – Пример включения блока Действие в блок-схему

Отличительной особенностью блока является наличие системной переменной *result*, которая размещена внутри блока (в правой части редактора). Переменную *result* нельзя удалить или скопировать. Для работы блока в переменную *result* должно быть записано значение *True* или *False*.

Рисунок 4.5 – Пример подключения переменной result внутри блока Условие

После выполнения последней функции блока *Условие* программа проверяет значение переменной *result* и если значение *True*, то программа переходит к выполнению блока, подключенного к «Выходу +», если значение *False* то программа переходит к выполнению блока, подключенного к «Выходу -».

Рисунок 4.6 – Направление исполнения программы в зависимости от значения переменной result

4.3 Создание блок-схемы

Как было сказано выше, блоки *Старт* и *Конец* присутствуют в программе в единственном экземпляре, их нельзя ни удалить, ни добавить копию одного из них. Можно только менять их положение на блоксхеме.

Блоки *Действие* и *Условие* можно добавлять на блок-схему в необходимом количестве. Для этого перейдите на вкладку *Блоки* на панели в средней части приложения и воспользуйтесь одним из двух способов перемещения блоков на схему:

- Выбор первым нажатием, размещение вторым нажатием.
 Нажмите на нужный блок левой кнопкой мыши в группе Основные блоки, затем переместите мышь на редактор блок-схем (в левой части) и повторно нажмите левую кнопку мыши, выбранный блок добавится на схему.
- Перетаскивание (drag'n'drop).
 Наведите указатель мыши на нужный блок в группе Основные блоки, затем «захватите» его (зажмите левую кнопку мыши) и переместите мышь на редактор блок-схем (в левой части). «Отпустите» блок (отпустите левую кнопку мыши), выбранный блок добавится на схему.

Чтобы отменить добавление блока нажмите клавишу **Esc** или нажмите на кнопку *Стрелка*. Блокам можно назначить название и описание. Для этого нужно сделать двойной щелчок по блоку или нажать правой клавишей мыши и выбрать пункт меню *Свойства* (дублирует пункт основного меню *Правка - Свойства*). В появившемся диалоговом окне ввести соответствующие параметры. Описание блока отображается при наведении на него мыши.

Вид Сборка Отладка Справка Кнопка для отмены вставки	_	×
Элементов на схему		
Масштаб 80 % 🗘 <= 🖌 # => Масштаб 80 % 🜩		
Старт Блоки скехция Переменные Основные блоки Сконстанта Основные блоки Старт Основные блоки Спока Действие Кнопка для добавления блока Действие Кнопка для добавления блока Действие Кнопка условие		
\$-2435		∣⊂

Рисунок 4.7 – Элементы для создания блок-схемы

Очерёдность исполнения блоков определяет пользователь с помощью соединительных линий. Соединённые выводы образуют цепь. Чтобы соединить два вывода, нужно сделать щелчок мышью по первому выводу, при этом появится линия, затем сделать клик по второму выводу. Направление линий можно изменять, делая клики в нужных местах в процессе создания (после клика по первому выводу). Вывод можно подключить к уже существующей цепи, кликнув сначала по выводу, затем по цепи. Для отмены создания цепи нужно нажать клавишу **Esc**. Цепь может содержать несколько выходов и один вход. Случай, когда цепь содержит более одного входа, приведёт к ошибке компиляции. Входы блоков обозначаются стрелочкой. Все выводы блоков блок-схемы должны быть подключены.

Каждый блок, добавленный пользователем, содержит свою схему функциональных блоков (в левой части приложения).

4.4 Описание элементов схемы функциональных блоков

4.4.1 Константы и переменные

Для того, чтобы пользователь мог задать нужное исходное состояние программы, а также для получения и обработки результатов работы программы, используются элементы *Константа* и *Переменная*.

Константа – постоянная величина, значение которой определяется на этапе составления программы и далее в ходе исполнения программы не меняется.

Переменная – именованная область памяти, которая используется для записи, чтения и хранения различных значений. Значение переменной определяется при составлении программы и впоследствии может постоянно меняться в ходе исполнения программы.

Название	Применимость	Описание				
Название	Переменная	Текстовое название, которое позволяет обратиться к значению каждой конкретной переменной (прочитать его или изменить). Максимальная длина названия – 16 символов.				
Тип	Переменная Константа	От типа зависит область допустимых значений и размер, выделяемый в памяти под константу или переменную. «Int32» Целое число от -2147483648 до 2147483647. Занимает в памяти 4 байта. «Float» Число с плавающей точкой. Диапазон значений без потери точности для чисел, состоящих не более, чем и 7 значащих цифр. Например, от -9999999 до 9999999 или от -0.999999 до 0.999999. Занимает в памяти 4 байта. «Bool» Логический тип, имеющий два значения <i>True</i> или <i>False</i> . Занимает в памяти менее 1 байта. Преобразование типов в Complex Events: «INT32 к FLOAT» и обратно «FLOAT к INT32»: Переносится только целая часть и знак: int32 «-123» преобразуется во float «-123.0»; float «5.99» преобразуется в int32 «5». «FLOAT/INT32 к BOOL»: <i>True</i> – значения <u>не равные</u> «0» (или «0.0»); <i>False</i> – значения <u>равные</u> «0» (или «0.0»). «BOOL к FLOAT/INT32»: <i>True</i> преобразуется в «1» (или «1.0»); <i>False</i> преобразуется в «0» (или «0.0»).				

Характеристики констант и переменных:

Значение (отображение)	Переменная Константа	Вид отображения значения числа с типом INT32 при отладке (при вычислениях отображение никак не влияет на результат). «DEC» - Число «26952» в десятичной системе исчисления `26952' «HEX» - Число «26952» в шестнадцатеричной системе исчисления `0x6948' «BIN» - Число «26952» в двоичной системе исчисления `0b01101001010000' «ASCII» - Число «26952» как текст кодировке ASCII `Hi'
Значение	Переменная Константа	Значение, которое примет константа или переменная при начале работы программы.
Доступ на запись (во время отладки)	Переменная	Если флаг установлен, то во время работы отладчика пользователь может без остановки программы изменить значение переменной вручную.

4.4.2 Функциональные блоки

Функциональный блок (*функция*) – это блок, который имеет определённое число входов и определённое число выходов. На входы функции поступают данные (например, от других блоков), затем эти данные обрабатываются и формируются данные, которые поступают на выходы данной функции (эти выходы могут быть подключены ко входам других функциональных блоков). Функции исполняются друг за другом. Очерёдность определяется порядковым номером.

Рисунок 4.8 – Порядковый номер для исполнения функции

Подробное описание каждой функции приведено в разделе «Библиотека функциональных блоков».

4.5 Создание схемы функциональных блоков

При выборе блока на блок-схеме (в левой части), в правой части приложения появляется его функциональная схема. Функциональная схема может содержать функциональные блоки (функции), переменные и константы, соединённые между собой. Линии на схеме функциональных блоков указывают направление передачи данных.

Чтобы добавить функцию на схему, перейдите на вкладку *Функции* на панели в средней части приложения и воспользуйтесь одним из двух способов перемещения блоков на схему:

- Выбор первым нажатием, размещение вторым нажатием.
 Нажмите на нужную функцию левой кнопкой мыши, затем переместите мышь на редактор схемы функциональных блоков (в правой части) и повторно нажмите левую кнопку мыши, выбранная функция добавится на схему.
- Перетаскивание (drag'n'drop).
 Наведите указатель мыши на нужную функцию, затем «захватите» ее (зажмите левую кнопку мыши) и переместите мышь на редактор схемы функциональных блоков (в правой части).
 «Отпустите» функцию (отпустите левую кнопку мыши), выбранная функция добавится на схему.

Чтобы отменить добавление функции нажмите клавишу **Esc**, или на кнопку *Стрелка*. Константы и переменные добавляются аналогично функциям, для это есть кнопки *Константа* и *Переменная*. При использовании кнопки *Переменная* на схему будет всегда добавляться новая переменная. Чтобы добавить на схему созданную ранее переменную, перейдите на вкладку *Переменные* и выберите нужную из списка. На этой вкладке отображаются все добавленные пользователем переменные. Одну и ту же переменную можно добавлять на разные схемы функциональных блоков.

Рисунок 4.9 – Элементы для создания схем функциональных блоков

Чтобы быстро найти переменную на схеме, нужно нажать кнопку *Поиск* для нужной переменной. Подробно об интерфейсе поиска можно прочитать в разделе «<u>Поиск переменных</u>».

Входы функций всегда располагаются слева, а выходы всегда справа. Соединение выводов элементов функциональной схемы осуществляется, как и на блок-схеме. Соединённые выводы образуют цепь. В цепи может быть только один выход функции, только одна переменная или константа. Если в цепи присутствует выход, то константа к данной цепи не должна быть подключена. Подключать все выводы функций к цепям не обязательно.

Функции исполняются последовательно друг за другом. В правом верхнем углу отображается порядковый номер функции, который определяет очерёдность исполнения. Чем меньше порядковый номер, тем раньше исполняется функция. Изменить порядковый номер можно выполнив двойной клик по функции или нажать правой клавишей мыши и выбрать пункт меню *Свойства*. Затем в появившемся диалоговом окне изменить значение параметра *Очерёдность исполнения*. В данном диалоговом окне можно изменять другие параметры функций, если они для неё предусмотрены.

В редакторе предусмотрен механизм автоматической нумерации функций, подробное описание приведено в разделе «<u>Автоматическая нумерация функциональных блоков</u>».

4.6 Элементы описания схемы

Для улучшения информативности схемы в редакторе предусмотрены следующие механизмы:

- Добавление/изменение Названия и Описания блока в левой части схемы
- Добавление элементов Текст и Прямоугольник на левую или правую часть схемы

Рисунок 4.10 – Кнопки управления операциями отмены и повторения

4.6.1 Название и Описание блока

У каждого блока левой части схемы есть *Название* и *Описание*. *Название* отображается на схеме внутри блока и в заголовке тултипа, который появляется при наведении указателя мыши на блок. *Описание* блока отображается только в тултипе. Для изменения *Названия* или *Описания* нужно нажать ПКМ на блок и в контекстном меню выбрать пункт *Свойства*.

4.6.2 Текст

Для размещения надписей на схеме можно использовать элемент *Текст*. Элемент можно разместить как в левой, так и в правой части. Для размещения необходимо выбрать пункт меню *Поместить - Текст*. Для надписей можно настроить следующие параметры:

- Размер шрифта
- Стиль написания (жирный, курсив, подчеркнутый)
- Вертикальное выравнивание (по левому краю, по центру, по правому краю)

Цвет текста определяется глобальной настройкой цветовой схемы (см. <u>раздел «Цветовая схема»</u>).

4.6.3 Прямоугольник

Для размещения рамок на схеме можно использовать элемент *Прямоугольник*. Элемент можно разместить как в левой, так и в правой части. Для размещения необходимо выбрать пункт меню *Поместить - Прямоугольник*. Для рамок можно настроить только тип линии.

Цвет рамок и их толщина определяются глобальной настройкой цветовой схемы (см. <u>раздел «Цветовая</u> <u>схема»</u>).

4.7 Отмена и повторение действий (Undo/Redo)

В редакторе доступны операции отмены и повторения действий.

Рисунок 4.11- Кнопки управления операциями отмены и повторения

В памяти хранятся последние 100 действий пользователя. Программа контролирует все основные манипуляции пользователя: создание/удаление/перемещение блоков, линий, переменных и констант, изменение названий переменных, изменение значений переменный и констант, изменение свойств блоков и функций и т.п. Это значительно облегчает работу в редакторе.

4.8 Автоматическая нумерация функциональных блоков

В редакторе предусмотрен механизм автоматической нумерации функциональных блоков (пункт меню *Правка – Пронумеровать функциональные блоки*). Эта функция позволяет быстро пронумеровать блоки в зависимости от их расположения на схеме.

Доступно два алгоритма нумерации:

Вниз затем вправо – Нумерация по столбцам сверху вниз, слева направо. *Вправо затем вниз* – Нумерация по строкам слева направо, сверху вниз.

Механизм нумерации ориентируется только на визуальное расположение элементов схемы и не корректирует свою работу в зависимости от порядка подключения элементов или их функционала.

Механизм автоматической нумерации предназначен для быстрой «черновой» нумерации. После нее рекомендуется проверить результат и внести корректировки вручную.

4.9 Поиск переменных

Для удобства работы с переменными можно воспользоваться интерфейсом поиска. Интерфейс можно вызвать двумя способами:

- Из меню *Вид Поиск переменных*
- В списке используемых переменных на вкладке *Переменные* нужно нажать кнопку *Поиск* Р

В редакторе откроется область со списком точек использования переменных. При двойном нажатии на любое из упоминаний редактор центрирует область просмотра в нужном месте схемы. Если вызвать интерфейс через кнопку *Поиск*, то при открытии интерфейса в строке поиска будет указано название выбранной переменной.

4.10 Работа с файлами

При запуске редактора Complex Events, создаётся пустой проект, на блок-схеме присутствуют только блоки *Старт* и *Конец*. Пункт меню *Файл – Новый* (кнопка ^С на панели инструментов) создаёт новый проект с простейшей блок-схемой.

Созданный проект можно сохранить в файл (пункты меню *Файл – Сохранить, Файл – Сохранить как* или кнопка на панели инструментов), открыть из файла (пункт меню *Файл – Открыть* или кнопка как или кнопка на панели инструментов). Для быстрого доступа к недавним проектам есть список недавно сохранённых и открытых файлов, он доступен через пункт меню *Файл – Недавние файлы*.

Схемы блоков можно сохранять и открывать в/из файла. Для этого нужно выбрать нужный блок на блок-схеме и воспользоваться пунктами меню **Правка – Импортировать**, **Правка – Экспортировать** (или нажать правой клавишей мыши и выбрать аналогичные пункты меню из списка). Для быстрого доступа блоки можно сохранять в шаблоны (пункт меню **Правка – Отправить в шаблоны**). Сохранённые шаблоны доступны в группе *Шаблоны* на вкладке *Блоки* на панели в средней части приложения.

5. СБОРКА ПРОГРАММЫ

Сборка программы вызывается через пункт меню *Сборка – Собрать* (или через кнопку 🛍 на панели инструментов). Сборка включает в себя:

- компиляцию проекта (можно вызвать отдельно, пункт меню Сборка Скомпилировать);
- построение выходного файла программы, для загрузки в прибор;
- проверку конфигурации устройства;
- вывод ошибок и предупреждений;
- отображение ресурсов, которые нужны для построения программы.

При компиляции происходит построение программы и выделение необходимых ресурсов. Если программа содержит ошибки, или в устройстве не хватает необходимых ресурсов для построения, то соответствующие сообщения добавляются на вкладку *Проблемы* (открывается автоматически).

При построении выходного файла формируется файл, загружаемый в устройство, в него входит программа, исполняемая интерпретатором Complex Events и исходный файл проекта. Если размер получившегося файла превышает допустимый, то на вкладку *Проблемы* добавляются соответствующие сообщения.

Для корректной работы программы в конфигурации устройства должна быть включена поддержка Complex Events, и если программа использует функции, работающие с периферией устройства, то эта периферия должна быть соответствующим образом настроена. Если в конфигурации присутствуют некорректные настройки, соответствующие сообщения добавляются на вкладку *Проблемы*.

На вкладке *Проблемы* отображаются сообщения об ошибках и предупреждениях. Доступ к вкладке осуществляется через пункт меню *Вид - Проблемы*. При двойном нажатии левой клавишей мыши на сообщении, приложение показывает проблемный элемент: показывает в графическом редакторе, отображает нужную вкладку конфигурации устройства и т.д.

На вкладке *Вывод сборки* отображаются потребляемые программой ресурсы. Доступ к вкладке осуществляется через пункт меню *Вид – Вывод сборки*.

Ресурсы программы:

- Код программы 2048 байт
- Переменные
 bool 256 шт

int / float - 512 байт (по 4 байта на одну переменную)

Общий размер файла, загружаемого в устройство – 16384 байт.

Информация об используемых ресурсах располагается в правой части статусной панели:

Рисунок 5.1 – Ресурсы программы

6. ОТЛАДКА ПРОГРАММЫ

Все отладочные опции доступны при подключённом устройстве.

6.1 Запуск отладки

Для отладки программы на устройстве выберите пункт меню *Отладка – Начать отладку* или нажмите кнопку **ж** на панели инструментов. После этого приложение выполнит следующие действия:

- Выполнит сборку проекта. Если в результате сборки будут сообщения об ошибках, отладка прервётся.
- Если в результате сборки будут сообщения о некорректной конфигурации устройства, будет предложено прервать отладку (если иное не выбрано в настройках).
- Предложит загрузить конфигурацию в устройство (если иное не выбрано в настройках). При согласии будет произведена загрузка конфигурации и ожидание перезагрузки устройства.
- Загрузит программу в устройство.
- Войдёт в режим отладки, с остановкой на первой исполняемой функции.

6.2 Подключение отладчика к работающей программе

Для отладки уже работающего устройства выберите пункт меню *Отладка – Подключиться к работающему устройству* или нажмите кнопку на панели инструментов. После этого приложение выполнит следующие действия:

- Предложит скачать конфигурацию из устройства (если иное не выбрано в настройках).
- Скачает программу из устройства и откроет в редакторе.
- Запустит сборку программы, при наличии сообщений об ошибках подключение прервётся.
- Войдёт в режим отладки, при этом программа будет продолжать исполняться.

6.3 Работа в режиме отладки

В режиме отладки приложение запрещает изменять текущую схему. Панель с элементами схемы в средней части заменяется отладочной панелью.

На отладочной панели отображаются: строка состояния программы, кнопки для управления программой, список переменных, информация о времени исполнения цикла программы.

Рисунок 6.1 – Внешний вид редактора в режиме отладки

6.3.1 Строка состояния программы

Программа может находиться в следующих состояниях:

- Нет программы в устройство не загружена программа или загружена с ошибкой.
- Ошибка в процессе исполнения программы возникла ошибка.
- Остановлена исполнение программы остановлено. При последующем старте программы произойдёт инициализация переменных и запуск с первой функции.
- Загрузка запись программы в устройство.
- Приостановлена работа программы приостановлена. При возобновлении работы программа продолжит исполнение с текущей функции. В данном режиме текущая функция и её блок подсвечены в окнах редактора.
- Исполнение устройство исполняет программу.

После выхода из режима отладки, устройство запустит или продолжит работу программы (в зависимости от текущего состояния), но только если программа не была в режимах: *Нет программы* или *Ошибка*.

6.3.2 Управление исполнением программы

Для управления ходом исполнения программы предусмотрены специальные кнопки под строкой состояния программы (эти кнопки продублированы в меню *Отладка*):

- *Продолжить* если программа в состоянии *Остановлена* запускает программу на исполнение, если программа в состоянии *Приостановлена* продолжает работу с текущей функции.
- Стоп останавливает исполнение программы (переводит в состояние Остановлена).
- Пауза 🔟 приостанавливает исполнение программы (переводит в состояние Приостановлена).
- *Шаг* исполняет одну функцию и приостанавливается на следующей.
- Цикл 🗖 исполняет все функции до тех пор, пока не перейдёт в начало программы, на первой функции приостанавливается.
- Отправить пользовательскую команду открывает диалог отправки данных в пользовательскую команду. Данная команда отображается на средней панели, только если в программе используется функция СМD.
- Завершить отладку завершает отладку программы, выводит устройство из отладочного режима и переводит редактор в обычный режим.

Для остановки программы перед исполнением конкретной функции в приложении предусмотрены точки останова. Для установки и снятия точки останова, нужно кликнуть правой клавишей мыши по интересующей функции и выбрать пункт меню *Поставить/снять точку останова* (продублирован в меню *Отладка*). Установка точек останова доступна также в режиме редактирования схемы проекта. Устройство физически поддерживает до 8 точек останова. Список текущих точек останова можно просмотреть на вкладке *Точки останова* (открывается через пункт меню *Вид – Точки останова*). Через данную вкладку можно удалять точки останова, выбрав нужные и нажав клавишу **Del**. При двойном клике по точке останова в списке приложение покажет функцию, на которой она установлена.

6.3.3 Просмотр значений данных схемы

В режиме отладки приложение на схеме отображает текущие значения на входах и выходах функций (непосредственно над каждым выводом). Данные считываются с устройства с периодом, заданным в настройках приложения.

Под кнопками в средней части программы располагается список используемых переменных с текущими значениями. Данный список можно фильтровать по имени переменной или по типу данных.

6.3.4 Время исполнения цикла программы

Программа исполняется циклически. Время одного цикла может изменяться в зависимости от состояния данных программы или от степени загруженности устройства. Для оценки времени исполнения

программы устройство измеряет период цикла. На панели в средней части программы, под списком переменных отображено минимальное, максимальное и усреднённое значение цикла в миллисекундах.

6.4 Загрузка и чтение программы без отладки

Редактор позволяет загрузить программу в устройство без входа в режим отладки. Для этого есть пункт меню *Отладка – Записать программу в устройство* (или кнопка на панели инструментов). Аналогично можно считать программу из устройства и открыть её в редакторе через пункт меню *Отладка – Прочитать программу из устройства* (или кнопку на панели инструментов).

Важно помнить, что при таком способе загрузки программы редактор не проверяет совместимость конфигурации устройства с загружаемой программой.

7. НАСТРОЙКИ

Настройки открываются через пункт меню *Файл – Настройки*. Настройка разделены на следующие группы: *Основные настройки, Настройки отладки, Цветовая схема*.

7.1 Основные настройки

В данном окне настраивается интервал автоматического сохранения изменений проекта – поле Сохранять автоматически. Доступны следующие значение:

- 10 секунд
- 30 секунд
- 1 минуту
- *5 минут*
- 10 минут
- *Нет* (автоматическое сохранение отключено)

7.2 Настройки отладки

В данном окне настраиваются следующие параметры:

- Период обновления данных это временной период в миллисекундах, с которым считывается отладочная информация, если связь с устройством установлена по USB.
 Минимальное значение 100 мс.
- *Период обновления данных при низкоскоростном соединении* временной период в миллисекундах, с которым считывается отладочная информация, если связь с устройством установлена по Bluetooth или через сервер RCS. Минимальное значение 1000 мс.
- *Запускать отладку с некорректной конфигурацией устройства* возможные значения: *Спросить* (по умолчанию), *Нет, Да*
- *Загружать конфигурацию в устройство перед отладкой* возможные значения: *Спросить* (по умолчанию), *Нет, Да*
- *Скачать конфигурацию из устройства перед подключением к отладке* возможные значения: *Спросить* (по умолчанию), *Нет, Да*

7.3 Цветовая схема

В данном окне настраивается цветовое оформление графических элементов ректора.

Поле *Предустановленные схемы* позволяет выбрать одну из стандартных цветовых схем. Для применения выбранной цветовой схемы необходимо выбрать ее в выпадающем списке и нажать кнопку *Применить*.

Для ручного редактирования цветовых схем редактора можно воспользоваться группой настроек, приведенных ниже.

Параметры в группе *Диаграмма блоков* относятся к интерфейсу, расположенному в левой части редактора. Параметры в группе *Диаграмма функций* относятся к интерфейсу, расположенному в правой части редактора. Параметры в группе *Общее* относятся к общим графическим элементам.

Поле Для состояния – определяет состояния, в котором находятся графические элементы. Возможны четыре состояния, первые два общие, следующие два относятся к режиму отладки:

- Нормальное обычное состояние, когда элемент не выбран.
- Выделен когда пользователь выбрал данный элемент, один или несколько.
- Текущий в режиме отладки, программа приостановлена на данном элементе.
- Текущий выделен дополнительно к предыдущему состоянию, элемент выбран.

8. ПРИЛОЖЕНИЯ

8.1 Сочетания клавиш

Работа с проектом:	Работа с проектом:					
CTRL + N	Создать новый проект					
CTRL + O	Открыть проект из файла					
CTRL + S	Сохранить проект в файл					
Сборка:						
CTRL + B	Собрать проект					
CTRL + SHIFT + B	Скомпилировать проект					
Отладка:						
F5	Начать отладку, продолжить исполнение					
F2	Завершить отладку					
F10	Выполнить один цикл					
F11	Выполнить одну функцию					
F9	Поставить/Снять точку останова					

8.2 Список кодов событий Complex Events

При работе функции устройство может формировать события со следующими кодами (event_code):

Код (HEX)	Код (DEC)	Текстовый псевдоним для SMS	Расшифровка
0xA056	41046	CMPLXEVNT_A	Complex Events. Пользовательское событие №1
0xA057	41047	CMPLXEVNT_S	Complex Events. Пользовательское событие №2
0xA058	41048	CMPLXEVNT_F	Complex Events. Пользовательское событие №3
0xA22F	41519	C_CVNT_U	Complex Events. Обновление программы.

8.3 Библиотека функциональных блоков

Перечень функ	Перечень функциональных блоков:									
Название	#	Описание	Кол	ичесте	во опе	рандов	Размер,	Тип		
00			IN	OUT	INT	CONST	байт	операндов		
ИОР	2			Г	1		1			
	3	Нет операции	-	-	-	-	1	-		
	76 Задержка		1	-	-	-	3	Int32		
MOVE	ОУЕ 4 Присваивание		1	1	-	-	5	Любые		
MOVE_EN	5	Грисваивание по условию	2	1	-	-	7	Любые		
TO_FLOAT	6	Преобразовать во float	1	1	-	-	5	int32		
FROM_FLOAT	75	Преобразовать из float	1	1	-	-	5	float		
Математические	опер	ации								
ADD	7	Сложение	2	1	-	-	7	float int32		
SUB	8	Вычитание	2	1	-	-	7	float int32		
MUL	9	Умножение	2	1	-	-	7	float int32		
DIV	10	Деление	2	1	-	-	7	float int32		
EXP	11	Возведение в степень	2	1	-	-	7	float int32		
MOD	12	Остаток от деления	1	1	-	-	5	float int32		
ABS	13	Абсолютное значение	1	1	-	-	5	float int32		
SIGN	14	Выделение знака	1	1	-	-	5	float int32		
SQRT	15	Квадратный корень	1	1	-	-	5	float		
LN	16	Натуральный логарифм	1	1	-	-	5	float		
LOG	17	Десятичный логарифм	1	1	-	-	5	float		
SIN	18	Синус	1	1	-	-	5	float		
COS	19	Косинус	1	1	-	-	5	float		
TAN	20	Тангенс	1	1	-	-	5	float		
ASIN	21	Арксинус	1	1	-	-	5	float		
ACOS	22	Арккосинус	1	1	-	-	5	float		
ATAN	23	Арктангенс	1	1	-	-	5	float		
Логические опер	ации		•	1	•	1		1		
AND	24	Логическое И	2	1	-	-	7	bool		
OR	25	Логическое ИЛИ	2	1	-	-	7	bool		
VOD	26	Логическое	_				_			
XOR	26	исключающее ИЛИ	2	1	-	-	/	bool		
NOT	27	Логическое НЕ	1	1	-	-	5	bool		
Побитовые опер	ации				•	1		1		
BAND	28	Побитное И	2	1	-	-	7	int32		
BOR	29	Побитное ИЛИ	2	1	-	-	7	int32		
BXOR	30	Побитное исключающее	2	1	_	_	7	int32		
		ИЛИ	_		-		,			
BNOT	31	Побитное НЕ	1	1	-	-	5	int32		
BSHL	32	Битовый сдвиг влево	2	1	-	-	7	int32		
BSHR	33	Битовый сдвиг вправо	2	1	-	-	7	int32		
CODER	34	Кодер	Ν	1	-	-	4+2*(N+1)	int32		
DECODER	35	Декодер	1	N	-	-	4+2*(N+1)	int32		
Сравнение	- T			1	T	1	1	1		
EQ	36	Равно	2	1	-	-	7	float int32		
NE	37	Не равно	2	1	-	-	7	float int32		
GT	38	Больше	2	1	-	-	7	float int32		
GE	39	Больше или равно	2	1	-	-	7	float int32		
Выбор и огранич										
SEL	40	Выбор значения	3	1	-	-	9	float int32		
MAX	41	Максимальное значение	2	1	-	-	7	float int32		
MIN	42	Минимальное значение	2	1	-	-	7	float int32		
LIMIT	43	Ограничение	3	1	-	-	7	float int32		
MUX	44	Мультиплексор	1+N	1		-	4+2*(N+2)	float int32		
DMUX	45	Демультиплексор	2	Ν	-	-	4+2*(N+2)	float int32		
APPERTURE	94	Фиксация изменений	2	1	1	-	9	float/int32		

Триггеры, генера	аторы	, СЧЁТЧИКИ						
SR	46	Триггер с доминантой включения	2	1	-	-	7	bool
RS	47	Триггер с доминантой выключения	2	1	-	-	7	bool
TT	48	Т-триггер	1	1	1	-	7	bool
ТР	49	Генератор импульса	2	2	2	-	11	bool
BLINK	50	Генератор импульсов	3	3	1	-	15	bool
TON	51	Таймер с задержкой включения	2	2	2	-	13	bool
TOFF	52	Таймер с задержкой выключения	2	2	2	-	13	bool
RISING	53	Детектор переднего фронта	1	1	1	-	7	bool
FALLING	54	Детектор заднего фронта	1	1	1	-	7	bool
CNT	55	Счётчик	5	3	2	-	21	bool
RAND	56	Генератор случайных чисел	-	1	-	-	3	int32
PWM	57	ШИМ генератор	2	2	1	-	11	int32
Специальные фу	нкци	И						
EVENT	58	Генератор событий	2	-	1	2	9	int32
CMD	59	Команда от устройства	-	6	-	-	13	int32
FLEX	60	Считывание значения из FLEX таблицы	-	1	-	3	6	int32
USER_PARAM	61	Запись значения в пользовательский параметр	2	-	-	1	6	int32
SMS	62	Отправить СМС	1	1	1	2+N	9+N	bool
USER_SMS	79	Отправить нестандартное СМС	1+N	1	1	M+L	7+2·N +M+L	bool
RECV_SMS	80	Получено СМС	0	1	0	1+N+M	4+N+M	bool
CALL	63	Сделать звонок	1	1	1	2	9	bool
CAM	64	Сделать снимок	1	1	1	-	7	bool
GEOZONE	65	Геозона	5	1	1	1	16	float int32
CALENDAR	76	Календарь	2	7	-	-	19	int32
INFO	95	Об устройстве	-	2	-	-	5	int32
IMEI	96	IMEI модема	-	2	-	-	5	int32
ICCID	97	ICCID SIM карты	1	2	-	-	7	int32
IMSI	98	IMSI SIM карты	1	2	-	-	7	int32
LOG_MSG	106	Отправить сообщение в лог	1+N	0	1	М	5+2·N+M	bool
Функции доступа	а к пе	риферийным устройства	М			1		
INPUT	66	Вход	1	2	-	1	8	int32
OUTPUT	67	Выход	1	-	1	1	6	int32
HYGRO	68	Гигрометр	-	2	-	1	6	float
ACCEL	69	Акселерометр	-	9	-	-	19	int32
ECODRIVE	70	EcoDrive	-	9	-	-	19	int32
ONEWIRE_KEY	71	OneWire ключ	-	3	-	-	7	int32
RFID	72	RFID	-	5	-	-	11	int32
TACHOGRAPH	73	Tachograph driver	-	7	-	1	16	int32
GUARD	74	Режим охраны	1	2	1	1	9	float int32
CRASH_FILE	77	Формирование файла ДТП	2	3	2	-	15	bool
PWRSAVE	81	Управление энергосбережением	6	-	-	-	13	bool
Функции доступа	а к ци	фровым портам						
RXD_GET	82	Прочитать значение из RXD буфера	2	1	-	1	8	float/int32

RXD_CMP	83	Поиск данных в RXD буфере	1	1	-	1+N	6+N	int32
RXD_STR2INT	84	Преобразовать строку из RXD буфера в целое число	1	1	-	-	5	int32
RXD_STR2FLOAT	85	Преобразовать строку из RXD буфера в число с плавающей точкой	1	1	-	-	5	float
RXD_CHECKSUM	86	Проверка контрольной суммы в RXD буфере	3	1	-	2	11	bool
TXD_INIT	87	Инициализация TXD буфера	1	-	-	1+N	4+N	bool
- TXD_SET	88	Запись значения в TXD буфер	4	-	-	1	10	float/int32
TXD_CHECKSUM	89	Записать контрольную сумму в TXD буфер	4	-	-	2	11	bool
TXD_GET	90	Прочитать значение из TXD буфера	2	1	-	1	8	float int32
RS_TRANS	91	Запрос/ответ через последовательный порт	3	3	-	2	15	bool
RS_SEND	92	Отправить данные в последовательный порт	2	1	-	1	8	bool
RS_RECV	93	Принять данные из последовательного порта	2	3	-	2	14	bool
RXD_GET	107	Прочитать значение из RXD буфера	2	Ν	-	1	7+2·N	float int32
TXD_SET	108	Запись значения в TXD буфер	3+N	-	-	1	9+2·N	float int32
MODBUS_READ	109	Чтение данных по протоколу Modbus RTU	1	2+N	1	7	9+2·N + 10	float int32 bool
MODBUS_WRITE	110	Запись данных по протоколу Modbus RTU	1+N	1+N 2 1 7		7	9+2·N + 10	float int32 bool

8.3.1 Общие инструкции

8.3.1.1 NOP - нет операции

Инструкция ничего не делает и не имеет входов, выходов.

8.3.1.2 DELAY - задержка

	Сигнатура	Тип	Описание
Входы	period	int32	Длительность задержки в мс.

Блок задерживает работу Complex Events на время, заданное входом period. Поэтому при работе программы и при отладке нельзя увидеть текущее оставшееся время задержки. Но если поставить отладчик на паузу в момент исполнения задержки, то он подсветит нужный блок «DELAY» на схеме.

8.3.1.3 MOVE - присваивание

	Сигнатура	Тип	Описание
Входы	x	float, int32, bool	Операнд на входе. Значение на входе <i>х</i> копируется в значение на выходе <i>у</i>
Выходы	у	float, int32, bool	Операнд на выходе

Тип блока определяется, типом значения на входе 🗴

8.3.1.4 MOVE_EN - присваивание по условию

	Сигнатура	Тип	Описание
Входы	x	float, int32, bool	Операнд на входе
	enable	bool	Условие копирования. Значение на входе <i>х</i> копируется в значение на выходе <i>у</i> , если <i>enable = true</i> , в противном случае <i>у</i> не изменяется.
Выходы	у	float, int32, bool	Операнд на выходе

Тип блока определяется, типом значения на входе х

Функция скрыта, начиная с версии редактора v3.3.0.

	Сигнатура	Тип	Описание
Входы	х	int32	Операнд на входе
Выходы	у	float	Операнд на выходе

Функция интерпретирует целочисленное значение, пришедшее на вход **x** как число с плавающей точкой, записанное по стандарту IEEE754 и переводит его в более легкое для восприятия и вычислений представление.

INT32	FLOAT

1095977927 = 13.206

8.3.1.6 (устарело) FROM_FLOAT – преобразовать float в int32(IEEE754)

🔔 Функция скрыта, начиная с версии редактора v3.3.0

	Сигнатура	Тип	Описание
Входы	х	float	Операнд на входе
Выходы	у	int32	Операнд на выходе

Функция переводит число с плавающей точкой, пришедшее на вход **ж** в целочисленный формат записи по стандарту IEEE754.

FLOAT

13.206 = 1095977927

INT32

8.3.2 Математические инструкции

8.3.2.1 ADD – сложение

	Сигнатура	Тип	Описание	
Byonu	а	float, int32	Слагаемое 1	
входы	b	float, int32	Слагаемое 2	
Выходы	У	float, int32	Сумма	
y = a + b				

Тип блока определяется, типом значения на входе а

8.3.2.2 SUB – вычитание

	Сигнатура	Тип	Описание	
Byonu	а	float, int32	Уменьшаемое	
бходы	b	float, int32	Вычитаемое	
Выходы	У	float, int32	Разность	
$\overline{y} = a - b$				

Тип блока определяется, типом значения на входе **b**

8.3.2.3 MUL – умножение

	Сигнатура	Тип	Описание
Byonu	а	float, int32	Множитель 1
бходы	b	float, int32	Множитель 2
Выходы	У	float, int32	Произведение
			$y = a \cdot b$

Тип блока определяется, типом значения на входе а

8.3.2.4 DIV – деление

	Сигнатура	Тип	Описание
Byonu	а	float, int32	Делимое
бходы	b	float, int32	Делитель
Выходы	У	float, int32	Частное
			a
			$y = \overline{b}$

Тип блока определяется, типом значения на входе а

8.3.2.5 EXP - возведение в степень

	Сигнатура	Тип	Описание
Byonu	а	float, int32	Значение
входы	b	float, int32	Степень
Выходы	У	float, int32	Результат
			a - b

Тип блока определяется, типом значения на входе а

8.3.2.6 МОД – модуль числа (остаток от деления)

	Сигнатура	Тип	Описание
Byonu	а	float, int32	Делимое
БХОДЫ	b	float, int32	Делитель
Выходы	У	float, int32	Результат
			y = a % b

Тип блока определяется, типом значения на входе а

8.3.2.7 ABS – абсолютное значение

	Сигнатура	Тип	Описание
Входы	X	float, int32	Входной операнд
Выходы	У	float, int32	Результат
			y = x

Тип блока определяется, типом значения на входе 🗴

8.3.2.8 SIGN – выделение знака

	Сигнатура	Тип	Описание
Входы	X	float, int32	Входной операнд
Выходы	У	float, int32	Результат
			(x > 0, 1)
			$y = \{ x = 0, 0 \}$
			(x < 0, -1)

Тип блока определяется, типом значения на входе х

8.3.2.9 SQRT – квадратный корень

	Сигнатура	Тип	Описание
Входы	X	float	Входной операнд
Выходы	У	float	Результат

 $y = \sqrt{x}$

8.3.2.10 LN – натуральный логарифм

	Сигнатура	Тип	Описание
Входы	X	float	Входной операнд
Выходы	У	float	Результат
$a = \ln \alpha$			

 $y = \ln x$

8.3.2.11 LOG – десятичный логарифм

	Сигнатура	Тип	Описание
Входы	X	float	Входной операнд
Выходы	У	float	Результат

 $y = \log x$

8.3.2.12 SIN – синус

	Сигнатура	Тип	Описание
Входы	X	float	Входной операнд
Выходы	У	float	Результат
			$y = \sin(x)$

8.3.2.13 COS – косинус

	Сигнатура	Тип	Описание
Входы	X	float	Входной операнд
Выходы	У	float	Результат
	$y = \cos(x)$		

8.3.2.14 TAN – тангенс

	Сигнатура	Тип	Описание
Входы	X	float	Входной операнд
Выходы	У	float	Результат
$y = t\sigma(y)$			

y = tg(x)

8.3.2.15 ASIN – арксинус

	Сигнатура	Тип	Описание	
Входы	X	float	Входной операнд	
Выходы	У	float	Результат	
	$y = a\sin(x)$			

8.3.2.16 АСОЅ – арккосинус

	Сигнатура	Тип	Описание
Входы	X	float	Входной операнд
Выходы	У	float	Результат
			$y = a\cos(x)$

 $y = a\cos(x)$

8.3.2.17 ATAN – арктангенс

	Сигнатура	Тип	Описание
Входы	X	float	Входной операнд
Выходы	У	float	Результат
			y = 2tg(y)

 $y = \operatorname{atg}(x)$

8.3.3 Логические инструкции

8.3.3.1 AND – логическое И

	Сигнатура	Тип	Описание
Byonu	а	bool	Операнд 1
входы	b	bool	Операнд 2
Выходы	У	bool	Конъюнкция
			٨

$$y = a \bigwedge b$$

а	b	У
0	0	0
0	1	0
1	0	0
1	1	1

8.3.3.2 OR – логическое ИЛИ

	Сигнатура	Тип	Описание
Byonu	а	bool	Операнд 1
бходы	b	bool	Операнд 2
Выходы	У	bool	Дизъюнкция

$$y = a \bigvee b$$

а	b	У
0	0	0
0	1	1
1	0	1
1	1	1

8.3.3.3 XOR – логическое исключающее ИЛИ

	Сигнатура	Тип	Описание			
Byonu	а	bool	Операнд 1			
входы	b	bool	Операнд 2			
Выходы	У	bool	Строгая дизъюнкция			

$$y = a \bigoplus b$$

а	b	У
0	0	0
0	1	1
1	0	1
1	1	0

8.3.3.4 NOT – логическое НЕ

	Сигнатура	Тип	Описание	
Входы	X	bool	Входной операнд	
Выходы	У	bool	Инверсия	
$y = \overline{x}$				

$$y = \overline{x}$$

X	У
0	1
1	0

8.3.4 Побитовые инструкции

8.3.4.1 BAND – побитное И

	Сигнатура	Тип	Описание	
Byonu	а	int32	Операнд 1	
бходы	b	int32	Операнд 2	
Выходы	У	int32	Побитная конъюнкция	
			$y = a \bigwedge b$	

0-	Значение	Значение	Значение (BIN)							
Операнд	(DEC)	(HEX)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
а	150	0x96	1	0	0	1	0	1	1	0
b	85	0x55	0	1	0	1	0	1	0	1
У	20	0x14	0	0	0	1	0	1	0	0

8.3.4.2 BOR – побитное ИЛИ

	Сигнатура	Тип	Описание		
Byonu	а	int32	Операнд 1		
входы	b	int32	Операнд 2		
Выходы	У	int32	Побитная дизъюнкция		

$$y = a \bigvee b$$

000000	Значение	Значение		Значение (BIN)								
Операнд	(DEC)	(HEX)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
а	150	0x96	1	0	0	1	0	1	1	0		
b	85	0x55	0	1	0	1	0	1	0	1		
У	215	0xD7	1	1	0	1	0	1	1	1		

8.3.4.3 BXOR – побитное исключающее ИЛИ

	Сигнатура	Тип	Описание
Byonu	а	int32	Операнд 1
бходы	b	int32	Операнд 2
Выходы	У	int32	Побитная строгая дизъюнкция

$$y = a \bigoplus b$$

000000	Значение	Значение		Значение (BIN)							
Операнд	(DEC)	(HEX)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
а	150	0x96	1	0	0	1	0	1	1	0	
b	85	0x55	0	1	0	1	0	1	0	1	
У	193	0xC3	1	1	0	0	0	0	1	1	

8.3.4.4 BNOT – побитное НЕ

	Сигнатура	Тип	Описание
Входы	X	int32	Входной операнд
Выходы	У	int32	Побитная инверсия
			—

 $y = \overline{x}$

0.00000	Значение Значени		ение Значение (BIN)								
Операнд	(DEC)	(HEX)	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
x	150	0x96	1	0	0	1	0	1	1	0	
У	105	0x69	0	1	1	0	1	0	0	1	

8.3.4.5 BSHL – битовый сдвиг влево

	Сигнатура	Тип	Описание					
Byonu	X	int32	Сдвигаемое					
бходы	п	int32	Величина сдвига (количество сдвигаемых бит)					
Выходы	У	int32	Результат сдвига					
	$y = x \ll n$							
			1 0 0 1 0 1 1 0 X = 150 (dec) = 0x96 (hex)					

$$Y = X << 2$$

$$V = 600 (dec) = 0x258 (hex)$$

8.3.4.6 BSHR – битовый сдвиг вправо

	Сигнатура	Тип	Οι	писание
Byonu	X	int32	Сдвигаемое	
входы	п	int32	Величина сдвига (количество с	сдвигаемых бит)
Выходы	У	int32	Результат сдвига	
			$y = x \gg n$	
	000	0 0 0	1 0 0 1 0 1 1 0	X = 150 (dec) = 0x96 (hex)
			Y = X >> 2	
	000	000	0 0 1 0 0 1 0 1 0	Y = 37 (dec) = 0x25 (hex)

8.3.4.7 CODER – кодер

	Сигнатура	Тип	Описание
	<i>X</i> 0	bool	Разряд О
Byonu	X 1	bool	Разряд 1
бходы			
	X N-1	bool	Разряд <i>N-1</i>
Выходы	У	int32	Поразрядная сумма
			$y = \sum_{i=0}^{n} x_i \ll i$
			$0b0000110 \rightarrow Y = 6$
			X0 = 0
			X1 = 1
			X2=1
			X ₃ = 0

8.3.4.8 DECODER – декодер

	Сигнатура	Тип	Описание
Входы	X	int32	Входное значение
	Уо	bool	Разряд О
BUYORU	Y 1	bool	Разряд 1
выходы			
	Y N-1	bool	Разряд <i>N-1</i>
		$y_i =$	$= \left(x \bigwedge (1 \ll i) \right) \gg i, i \in 0N-1$

$$y_i = \left(x \bigwedge (1 \ll i) \right) \gg i, \qquad i \in 0..N -$$

$$Y_{0} = 0$$

$$Y_{1} = 1$$

$$Y_{2} = 1$$

$$Y_{3} = 0$$
...

8.3.5 Инструкции сравнения

8.3.5.1 EQ – равно

	Сигнатура	Тип	Описание				
Byonu	а	float, int32	Операнд 1				
входы	b	float, int32	Операнд 2				
Выходы	У	bool	Результат <i>true</i> , если <i>a</i> = <i>b</i>				
$y = \begin{cases} a = b, & true\\ false \end{cases}$							

Тип блока определяется, типом значения на входе а

8.3.5.2 NE – не равно

	Сигнатура	Тип	Описание				
Byonu	а	float, int32	Операнд 1				
входы	b	float, int32	Операнд 2				
Выходы	У	bool	Результат <i>true</i> , если <i>а</i> ≠ <i>b</i>				
$y = \begin{cases} a \neq b, & true \\ false \end{cases}$							

Тип блока определяется, типом значения на входе а

8.3.5.3 GT – больше

	Сигнатура	Тип	Описание
Byonu	а	float, int32	Операнд 1
бходы	b	float, int32	Операнд 2
Выходы	У	bool	Результат <i>true</i> , если <i>a</i> > <i>b</i>
			$y = \begin{cases} a > b, & true \\ false \end{cases}$

Тип блока определяется, типом значения на входе а

8.3.5.4 GE – больше или равно

	Сигнатура	Тип	Описание
Byonu	а	float, int32	Операнд 1
входы	b	float, int32	Операнд 2
Выходы	У	bool	Результат <i>true</i> , если $a \ge b$
$y = \begin{cases} a \ge b, & true\\ false \end{cases}$			

Тип блока определяется, типом значения на входе а

8.3.6 Инструкции выбора и ограничения

8.3.6.1 SEL – выбор значения

	Сигнатура	Тип	Описание
	а	float, int32	Операнд 1
	b	float, int32	Операнд 2
Входы	п	bool	Операнд выбора. Если <i>п</i> равно «1», то на выход будет передано значение входа <i>b.</i> Иначе на выход будет передано значение входа <i>а</i> .
Выходы	У	float, int32	Результат
			$y = \begin{cases} n = false, & a \\ b & b \end{cases}$

$$y = \begin{cases} n & j \text{ and } j \\ b \end{cases}$$

Тип блока определяется, типом значения на входе а

8.3.6.2 МАХ – максимальное значение

	Сигнатура	Тип	Описание
Byonu	а	float, int32	Операнд 1
бходы	b	float, int32	Операнд 2
Выходы	У	float, int32	Максимальное значение
			$y = \begin{cases} a > b, & a \\ b & b \end{cases}$

Тип блока определяется, типом значения на входе а

8.3.6.3 MIN – минимальное значение

	Сигнатура	Тип	Описание
Byonu	а	float, int32	Операнд 1
входы	b	float, int32	Операнд 2
Выходы	У	float, int32	Минимальное значение
			a < b, $a < b$, $b < b < b < b < b$, $b < b < b < b < b$, $b < b < b < b < b < b < b < b < b < b$

$$y = \begin{cases} a < b, \\ b \end{cases}$$

Тип блока определяется, типом значения на входе а

	Сигнатура	Тип	Описание
	X	float, int32	Входной операнд
Входы	max	float, int32	Максимум
	min	float, int32	Минимум
			Если <i>х</i> меньше <i>тіп</i> то на выходе будет установлено <i>тіп</i> .
Выходы	У	float, int32	Если <i>х</i> больше <i>тах</i> то на выходе будет установлено <i>тах</i> .
			Иначе на выходе будет установлено значение х.
			(x > max, max)
			$y = \{x < min, min\}$
			(r

Тип блока определяется, типом значения на входе х

8.3.6.5 MUX – мультиплексор

	Сигнатура	Тип	Описание
	X 0	float, int32	Вход О
	X 1	float, int32	Вход 1
Входы			
	X N-1	float, int32	Вход <i>N-1</i>
	k	int32	Номер входа, значение которого будет передано на выход.
Выходы	У	float, int32	Выход принимает значение одного из входов.
			$y = x_k, \qquad k \in 1 \dots N - 1$

Тип блока определяется, типом значения на входе х

8.3.6.6 DMUX – демультиплексор

	Сигнатура	Тип	Описание
Byonu	X	float, int32	Вход. Значение, которое будет передано на один из выходов.
бходы	k	int32	Номер выхода, на который будет передано входное значение.
	Уо	float, int32	Выход О
	Y 1	float, int32	Выход 1
выходы			
	Y N-1	float, int32	Выход <i>N-1</i>
		у	$x_i = \begin{cases} x, & i = k \\ 0, & k \in 0 \dots N - 1 \end{cases}$

Тип блока определяется, типом значения на входе х

8.3.6.7 APPERTURE – фиксация изменений

	Сигнатура	Тип	Описание
	x	float, int32	Входной операнд
Входы	delta	float, int32	Величина, при изменении на которую выход у устанавливается в <i>true</i>
Выходы	У	bool	Результат
Внутренние	x_old	float, int32	Значение х, при предыдущей фиксации
Δ. Τип θ	delta delta	у =	$\left\{ \begin{array}{c} x - x_ola \geq delta, & true \\ false \end{array} \right.$

8.3.7 Триггеры, генераторы, счётчики

8.3.7.1 SR – триггер с доминантой включения

	Сигнатура	Тип	Описание
Входы	5	bool	Установка выхода. Когда на вход S приходит «1», выход Q устанавливается в «1». Вход S «доминантный», т.е. если на входах S и R установлены «1», то выход Q будет установлен в «1».
	R	bool	Сброс выхода. Когда на вход R приходит «1», выход Q устанавливается в «0».
Выходы	0	bool	Выход

$$Q = (\overline{R} \bigwedge Q) \bigvee S$$

8.3.7.2 RS – триггер с доминантой выключения

	Сигнатура	Тип	Описание
Входы	5	bool	Установка выхода. Когда на вход S приходит «1», выход <i>Q</i> устанавливается в «1».
	R	bool	Сброс выхода. Когда на вход R приходит «1», выход Q устанавливается в «0». Вход R «доминантный», т.е. если на входах S и R установлены «1», то выход Q будет установлен в «0».
Выходы	Q	bool	Выход

$$Q = \overline{R} \bigwedge (Q \bigvee S)$$

8.3.7.3 TT – Т-триггер

	Сигнатура	Тип	Описание
Входы	Т	bool	Вход. Когда на вход T приходит перепад от «0» к «1», выход Q инвертируется.
Выходы	Q	bool	Выход
Внутренние	old	bool	Значение Т на предыдущем такте

8.3.7.4 ТР – генератор импульса

	Сигнатура	Тип	Описание
Входы	start	bool	Запуск (передний фронт)
	period	int32	Длительность импульса в мс
	<i>output</i> bool	Выход. Устанавливается в 1, входом start. Сбрасывается в 0,	
Выходы Внутренние		bool	при достижении счётчика count значения входа period
			(период).
	count	int32	Значение счётчика в мс. Запускается входом start.
	tick	int32	Начало отсчёта счётчика <i>count</i>
	old	bool	Значение <i>start</i> на предыдущем такте

Когда на вход *start* поступает «1», на выходе *output* возникает «1» и запускается внутренний счётчик *count*. Когда счётчик достигнет значения *period*, счёт останавливается и выход *output* обнуляется.

8.3.7.5 BLINK – генератор импульсов

	Сигнатура	Тип	Описание
	enable	bool	Разрешающий сигнал
Входы	duration hi	int32	Длительность состояний логической «1» в мс
	duration lo	int32	Длительность состояний логического «0» в мс
Выходы	output	bool	Выход. Находится в состоянии логической «1», при счёте счётчика <i>count hi</i> , и в состоянии логического «0» при счёте счётчика <i>count lo</i> .
	count hi	int32	Счётчик состояние логической «1» в мс. Сбрасывается одновременно со сбросом счётчика <i>count lo</i> .
	count lo	int32	Счётчик состояние логического «0» в мс. Сбрасывается при достижении значения <i>duration lo</i>
Внутренние	<i>TCK</i> int32 Начало отсчёта счётчиков <i>count hi</i> и <i>count lo</i>		Начало отсчёта счётчиков <i>count hi</i> и <i>count lo</i>

Когда на входе *enable* логический «0», генератор выключен и все выходы равны нулю. Когда на входе *enable* логическая «1», генератор работает, счётчики *count hi* и *count lo* считают поочерёдно от нуля до значений *duration hi*, *duration lo* соответственно. Когда считает счётчик *count hi*, выход *output* равен «1», когда считает *count lo*, выход *output* равен «0».

8.3.7.6 TON - таймер с задержкой включения

	Сигнатура	Тип	Описание
Bronu	start	bool	Запуск
бходы	delay	int32	Длительность включения в мс
Выходы	output	bool	Устанавливается в 1, при достижении счётчика count значения
			входа <i>delay</i> .
	count	int32	Значение счётчика в мс. Запускается входом start.
Buyggouuuo	old	bool	<i>start</i> на предыдущем такте
внутренние	ТСК	int32	Начало отсчёта счётчика <i>count</i>

8.3.7.7 TOFF – таймер с задержкой выключения

	Сигнатура	Тип	Описание
Decoment	start	bool	Запуск
бходы	delay	int32	Длительность выключения в мс
Выходы	output	bool	Устанавливается в 1, входом <i>start</i> . Сбрасывается в 0, при достижении счётчика <i>CNT</i> значения входа <i>delay</i> .
	count	int32	Значение счётчика в мс. Запускается при изменении входа <i>start</i> от 1 к 0.
Внутренние	old	bool	<i>start</i> на предыдущем такте
	TCK	int32	Начало отсчёта счётчика <i>CNT</i>

8.3.7.8 RISING – детектор переднего фронта

	Сигнатура Тип Описание		Описание
BYORLI	innut	bool	Когда на входе <i>input</i> происходит переход от «0» к «1» на один
бходы	mput		цикл на выходе <i>output</i> устанавливается логическая «1».
Выходы	output	bool	Выход. Устанавливается в 1, при изменении <i>input</i> от 0 к 1.
Внутренние	old	bool	Значение <i>input</i> на предыдущем такте

8.3.7.9 FALLING – детектор заднего фронта

	Сигнатура	Тип	Описание
Входы	input	bool	Когда на входе <i>input</i> происходит переход от «0» к «1» на один программы на выходе <i>output</i> устанавливается логическая «1».
Выходы	output	bool	Выход. Устанавливается в 1, при изменении <i>input</i> от 1 к 0.
Внутренние	old	bool	Значение <i>input</i> на предыдущем такте

output =
$$old \bigwedge \overline{input}$$

8.3.7.10 CNT – счётчик

	Сигнатура	Тип	Описание
	í		Инкрементирующий вход.
	INC	DOOI	когда на входе <i>Inc</i> происходит переход от «0» к «1» счетчик <i>count</i> увеличивает своё значение на 1.
	dec	bool	Декрементирующий вход. Когда на входе <i>dec</i> происходит переход от «0» к «1» счётчик <i>count</i> уменьшает своё значение на 1.
Входы	reset	bool	Сброс счётчика <i>count.</i> Когда вход <i>reset</i> равен «1», счётчик <i>count</i> сбрасывается в ноль.
	threshold hi	int32	Верхнее пороговое значение. При достижении счётчика <i>count</i> значения <i>threshold hi</i> выход <i>hi</i> устанавливается в логическую «1».
	threshold lo	Int32	Нижнее пороговое значение. При уменьшении значения счётчика <i>count</i> меньше значения <i>threshold lo</i> выход <i>lo</i> устанавливается в логическую «1».
	count	int32	Значение счётчика
Выходы	hi	bool	Значение счётчика <i>count</i> ≥ <i>threshold hi</i>
	ю	bool	Значение счётчика <i>count</i> ≤ <i>threshold lo</i>
Buyggoouuu	inc old	bool	Значение <i>іпс</i> на предыдущем такте
внутренние	dec old bool		Значение <i>dec</i> на предыдущем такте

8.3.7.11 RAND – генератор случайный чисел

	Сигнатура	Тип	Описание
Выходы	output	int32	Псевдослучайное число

8.3.7.12 РWМ – ШИМ генератор

	Сигнатура	Тип	Описание
Byonu	duration	int32	Длительность импульса ШИМ в мс
бходы	period	int32	Период ШИМ в мс
	оды	bool	Выход. Равен 1 когда счётчик <i>соипt</i> больше или равен
Выходы			длительности импульса <i>duration</i> .
	count	int32	Счётчик ШИМ в мс. Считает от <i>0</i> до <i>period-1</i>
Внутренние	<i>tick</i> int32 Начало отсчёта счётчика <i>count</i>		Начало отсчёта счётчика <i>count</i>

8.3.8 Специальные функции

8.3.8.1 EVENT	– генератор	событий
---------------	-------------	---------

	Сигнатура	Тип	Описание
	generate	bool	Сигнал генерации события.
Входы	force	bool	Внеочередное событие. Если параметр <i>force</i> равен <i>true</i> , то событие будет отправлено на сервер вне очереди, в противном случае событие обдует отправлено в порядке общей очередности.
Настройки	index	uint8	Номер события. Доступны 3 кода события, которые будут подставлены в №2 поле (event_code) протокола FLEX: CE_EVT_1 – Событие №41046; CE_EVT_2 – Событие №41047; CE_EVT_3 – Событие №41048.
	format	uint8	Формат пакета <i>(Функция в разработке)</i>
Внутренние	old	old bool Значение сигнала генерации события, на предыдущем цикле	

Если на вход **generate** <u>подключена константа</u> и ее значение True, то функция работает в режиме «давящего сигнала». При каждом исполнении функция пытается сформировать событие.

Если на вход generate <u>подключена переменная или выход другой функции</u>, то срабатывание происходит при переходе от False к True.

8.3.8.2 CMD – команда от устройства

	Сигнатура	Тип	Описание
астіч рагал рагал рагал рагал рагал рагал	active	bool	Сигнал о приходе команды
	param1	int32	Параметр 1
	param2	int32	Параметр 2
	param3	int32	Параметр 3
	param4	int32	Параметр 4
	param5	int32	Параметр 5

Для получения параметров от пользователя или системы мониторинга предусмотрена команда, которую устройство может принять по каналам USB, Bluetooth, SMS, Internet.

При получении команды устройство на один цикл работы блока устанавливает на выходе *active* значение «1» (впоследствии оно будет сброшено в «0»).

Выходы *paramX* принимают значения последней принятой команды. (выходы сбрасываются в «0» при первом запуске модуля Complex Events или при получении значения «0» в команде).

Формат команды:

Запрос	*!CEVT <s><param1>[,<param2>,<param3>,<param4>,<param5>] Пример: *!CEVT 120,300 // Допускается не дописывать последние значения *!CEVT 10,,,,200 // Для пропуска промежуточных нужно оставить заг</param5></param4></param3></param2></param1></s>	лятые
Ответ	*@CEVT	
Канал обмена	Internet, USB, Bluetooth, SMS	
Обозначение	Расшифровка	Формат данных
<\$>	Разделитель – пробел (0х20)	char
<param1></param1>	Значение, устанавливаемое на выходе param1. Текстовое значение преобразуется в число I32. Пустое значение воспринимается как 0.	char[]
<param2></param2>	Аналогично параметру <param1>, но для param2</param1>	char[]
<param3></param3>	Аналогично параметру <param1>, но для param3</param1>	char[]
<param4></param4>	Аналогично параметру <param1>, но для param4</param1>	char[]
<param5></param5>	Аналогично параметру <param1>, но для param5</param1>	char[]

Функция обновлялась. Текущая реализация используется с версии редактора v3.4.1

	Сигнатура	Тип	Описание
Выходы	value	int32	Значение, возвращаемое блоком
	index	uint8	Номер поля FLEX, из которого необходимо получить значение
	offcot	uint8	Смещение в байтах от начала поля (некоторые поля содержат
	UNSEL	unto	несколько десятков байт)
			Тип параметра для чтения:
Настройки			uint8 – однобайтовое число без знака;
	tuno	uint9	int8 – однобайтовое число со знаком;
Настройки	type	uinto	uint16 – двухбайтовое без знака;
			int16 – двухбайтовое со знаком;
			int32/float – четырехбайтовое со знаком / вещественное.

Логика работы функции зависит от типа данных:

Если на выход value подключена переменная с типом FLOAT и параметр type = int32/float, то функция читает данные из памяти по стандарту IEEE754. Такой способ необходимо использовать для параметров FLEX, которые хранятся <u>в формате Float</u> (Например, параметр "скорость")
 Иначе функция читает данные как число INT32. Такой способ необходимо использовать для парамется <u>в любом формате Float</u>.

Конвертация выполняется автоматически при помощи функций <u>FROM_FLOAT</u> и <u>TO_FLOAT</u>.

0 2 0 4 1/050	D4 D 4 4 4		<i>u</i>	
X + X + I + K	$P \Delta R \Delta M = 3 \pi n n c h$	значениа в	попьзовательский	папаметп
0.5.0. 1 05LN_		Shu (Chinh) D	nondsodarchidenni	napancip

	Сигнатура	Тип	Описание
	value	int32/float	Значение, которое должно быть записано в соответствующий
			пользовательский параметр
Вход			Условие записи.
	enable	bool	Значение на входе <i>value</i> записывается, если <i>enable = true</i> , в
			противном случае значение не записывается.
Настройки	index	uint8	Индекс пользовательского параметра, в который будет
Вход Настройки	Πάελ	unto	произведена запись

Для работы функции, в конфигурации устройства должна быть настроена передача соответствующего пользовательского параметра. Нужно <u>сначала</u> поместить блок на схему, потом (перед компиляцией) внести изменения в конфигурацию.

Конфигурация > Настройка протокола:

..> выбрать «FLEX3.0»

..> Пользовательские параметры > Назначить параметры «Пользовательский параметр CEx».

Логика работы функции зависит от типа данных:

- Если на вход **value** подключена **переменная** с типом **FLOAT**, то функция записывает данные в память по стандарту IEEE754. Такой способ необходимо использовать для параметров, которые будут прочитаны сервером <u>в формате Float</u> (Например, так следует записать число 12.016). Для передачи такого значения на сервер необходимо использовать пользовательский параметр размером 4 байта.

- Иначе функция записывает данные как целое число. Такой способ необходимо использовать для параметров, которые будут прочитаны сервером <u>в форматах Int или Uint</u> (Например, так следует записать число 43605). Для передачи на сервер можно использовать пользовательский параметр любого размера.

Конвертация выполняется автоматически при помощи функций <u>FROM_FLOAT</u> и <u>TO_FLOAT</u>.

	Сигнатура	Тип	Описание
Вход	start	bool	Сигнал отправки SMS.
Выход	active	bool	Выполнение. На выходе появляется <i>true</i> пока устройство не выполнит предыдущую попытку отправки SMS.
	user	uint8	Номер абонента в памяти устройства.
	type	uint8	Тип сообщения
Настройки	message	string	Пользовательская строка, которая будет добавления в сообщение, до 32 символов (ASCII строка, только латинские символы). НЕ используется, если <i>type</i> = «Стандартное SMS».
Внутренние	old	bool	Значение <i>start</i> на предыдущем цикле

Если на вход **start** <u>подключена константа</u> и ее значение True, то функция работает в режиме «давящего сигнала». При каждом исполнении функция пытается отправить сообщение.

Если на вход **start** <u>подключена переменная или выход другой функции</u>, то срабатывание происходит при переходе от False к True.

8.3.8.6 USER_SMS – отправить нестандартное СМС

	Сигнатура	Тип	Описание
	start	bool	Сигнал отправки SMS.
	value₀	int32/float	Аргумент 0
Входы	value1	int32/float	Аргумент 1
	value _{N-1}	int32/float	Аргумент <i>N-1</i>
BLINGE	activo	bool	Выполнение. На выходе появляется <i>true</i> пока устройство не
выход	active	0001	выполнит текущую попытку отправки SMS.
	ucar	string	Строка с произвольным номером телефона или с номером
	user	Sung	абонента из конфигурации
Настройки			Текст сообщения. В тело сообщения могут быть добавлены
Выход Настройки Внутренние	message	string	аргументы. Пример:
	-	_	Напряжение = {0} В, Температура = {1} *С
Внутренние	old	bool	Значение <i>start</i> на предыдущем цикле

Если на вход **start** <u>подключена константа</u> и ее значение True, то функция работает в режиме «давящего сигнала». При каждом исполнении функция пытается отправить сообщение.

Если на вход **start** <u>подключена переменная или выход другой функции</u>, то срабатывание происходит при переходе от False к True.

8.3.8.7 RECV_SMS – индикатор получения СМС

	Сигнатура	Тип	Описание
Выход	active	bool	Сигнал о получении СМС, подошедшей по шаблону <i>message</i> с проверкой по условиям <i>flags</i> . На выходе на один цикл исполнения программы появляется <i>true</i> .
	phone	string	Строка с произвольным номером телефона
Настройки	message	string	Текст шаблона (до 16 символов)
	flags	uint8	Параметры проверки

	Сигнатура	Тип	Описание
Вход	start	bool	Сигнал вызова.
Выход	active	bool	Выполнение. На выходе появляется <i>true</i> пока устройство не выполнит предыдущую попытку дозвона.
Настройки	user	uint8	Номер абонента в памяти устройства
пастроики	type	uint8	Тип дозвона
Внутренние	old	bool	Значение start на предыдущем цикле

Если на вход **start** <u>подключена константа</u> и ее значение True, то функция работает в режиме «давящего сигнала». При каждом исполнении функция пытается отправить сообщение.

Если на вход **start** <u>подключена переменная или выход другой функции</u>, то срабатывание происходит при переходе от False к True.

8.3.8.9 САМ – сделать снимок

	Сигнатура	Тип	Описание
Вход	start	bool	Сигнал сделать снимок.
Выход	active	bool	Выполнение. На выходе появляется <i>true</i> пока устройство формирует и сохраняет снимок.
Внутренние	old	bool	Значение <i>start</i> на предыдущем цикле

Для работы функции, в конфигурации устройства должна быть настроена работа с фотокамерой.

Конфигурация > RS-232/RS-485 > Использовать как > «Камера».

Если на вход **start** <u>подключена константа</u> и ее значение True, то функция работает в режиме «давящего сигнала». При каждом исполнении функция пытается отправить сообщение.

Если на вход **start** <u>подключена переменная или выход другой функции</u>, то срабатывание происходит при переходе от False к True.

8.3.8.10 GEOZONE – Геозона

	Сигнатура	Тип	Описание
	latitude	float	Широта центра геозоны (Например: 55,755669)
	longitude	float	Долгота центра геозоны (Например: 37,616802)
	radius	float	Радиус окружности геозоны в метрах
Вход	course	int32	Направление движения (курс) для фиксации входа в геозону
			Разброс угла направления движения.
	course delta	int32	Если course delta принимает значение 360, то контроль курса для
			входа в геозону не производится.
Выход	active	bool	Значение <i>true</i> , если объект внутри геозоны и .
Настройки	speed min	int16	Скорость, ниже которой не обновляется <i>current course</i>
Buyggouuua	current	int22	
внутренние	course	IIILSZ	текущий курс

8.3.8.11 CALENDAR – Календарь

	Сигнатура	Тип	Описание
Byon	UNIX time	int32	Время в формате UNIX-time.
вход	timezone	int32	Временная зона. Целое число от -12 до 12.
	year	int32	Год
	month	int32	Номер месяца Целое число от 1 до 12.
	monun	IIICJZ	Например: 1 – Январь и т.д.
	day	int32	День месяца. Целое число от 1 до 31.
Выход	day of week	int32	День недели. Целое число от 1 до 7.
	uay of week	IIICJZ	Например: 1 – Понедельник и т.д.
	hour	int32	Час. Целое число от 0 до 24.
	min	int32	Минута. Целое число от 0 до 59.
	SEC	int32	Секунда. Целое число от 0 до 59.

Время формате UNIX-time это целое число, представляющее собой количество секунд, прошедших с 00:00:00 01.01.1970г.

Блок преобразует время в формате UNIX-time с учетом часового пояса в более удобные для использования, отдельные параметры год, месяц день и другие.

Преобразовать текущее время устройства нужно создать блок FLEX для получения поля №3 [time] и подключить на вход *UINX time*.

	_														~	_										 								
			ł	FL	E	X	п	ap	a	ме	eη	P	3		ι											 						Кален	дарь	72
													,	/alu	Je	ŀ	1	63	70	644	48	B			÷	16	37	06	44	88	8 [.]	unix time	v	ear
ľ														3		Ľ			• •	• •	• •	1	• •	1	1	• •	÷	• •	•	1	31	time zone	mor	nth
:	: :	:	:	:	: :		:	:	-		:	ľ					:	:		: :		2	: :	Ĵ	:	 	:	: :		÷	:			Jav
:	: :	:	:	:	: :		:	:			:	:	: :	:	:		:	:		: :		:	: :	÷	:	 	:	: :		:	:		day of we	æk
:	: :	:	:	:	: :		:	:		: :	:	:	: :		:		1	:		: :	: :	1	: :	Ì	:	 	:	: :		÷	:		h	our
:	: :	:	:	:	: :		1	:		: :	:	:	: :	:	:	: :	:	:		: :	: :	:	: :	÷	1	: :	:	: :		÷	:		r	min
:	: :	:	:	:	: :		:	:		: :	:	:	: :	-	:		:	:		: :		2	: :	÷	:	 	:	: :		÷	:			sec
																										 								~~~

8.3.8.12 INFO – Информация об устройстве

	Сигнатура	Тип	Описание
	model	int32	Цифровое обозначение модели устройства.
Выход	version	int32	Версия прошивки устройства, представленная как целое число, где младшие 2 цифры расположены в первом байте, средние 2 цифры во втором и старшие 2 цифры в третьем байте.

Например, устройство S-2435 с прошивкой v03.02.31: model = 2435 version = 197151 (0x0003021F)

## 8.3.8.13 IMEI – IMEI модема

	Сигнатура	Тип	Описание
Выход	digits 80	int32	Число, представляющее младшие 9 цифр IMEI.
	digits 149	int32	Число, представляющее старшие 6 цифр IMEI.

Например, IMEI 866795030518573 будет представлен так: digits 8..0 = 30518573 digits 14..9 = 866795



В примере для **digits 8..0** записано не 030518573, а 30518573. Крайние нули слева не отображаются при выводе числовых значений.

# 8.3.8.14 ICCID – ICCID SIM карты

	Сигнатура	Тип	Описание
Вход	SIM index	bool	Номер слота SIM карты: « <b>0</b> » - внешний; « <b>1</b> » - внутренний.
Выход	digits 80	int32	Число, представляющее младшие 9 цифр ICCID.
	digits 169	int32	Число, представляющее следующие 8 цифр ICCID.

Например, ICCID 8970199201010570553 будет представлен так: digits 8..0 = 10570553 digits 16..9 = 70199201



В примере для **digits 8..0** записано не 010570553, а 10570553. Крайние нули слева не отображаются при выводе числовых значений.



Длина ICCID номера обычно от 19 до 20 цифр. Функция позволяет получить только младшие 17 цифр. Старшие 2 цифры, для любых SIM карт по стандарту ISO/IEC 7812-1 должны иметь значение '89'.

#### 8.3.8.15 IMSI – IMSI SIM карты

	Сигнатура	Тип	Описание
			Номер слота SIM карты:
Вход	SIM index	bool	<b>«О»</b> - внешний;
			<b>«1»</b> - внутренний.
Выход	digits 80	int32	Число, представляющее младшие 9 цифр IMSI.
	digits 149	int32	Число, представляющее старшие 6 цифр IMSI.

Например, IMSI 250991039698855 будет представлен так: digits 8..0 = 39698855 digits 14..9 = 250991

В примере для **digits 8..0** записано не 039698855, а 39698855. Крайние нули слева не отображаются при выводе числовых значений.

Первые три цифры IMSI это МСС (код страны, например, 250 – Россия). За ним следует две или три цифры MNC (код мобильной сети, например, 99 – Билайн). Все последующие цифры – идентификатор пользователя MSIN.

8.3.8.16 LOG_MSG – отправить сообщение в пользовательский лог

	Сигнатура	Тип	Описание
	send	bool	Сигнал отправки сообщения.
	valueo	int32/float	Аргумент 0
	value ₁	int32/float	Аргумент 1
Dvo - L			
входы	value _{N-1}	int32/float	Аргумент <i>N-1</i>
	message	string	Текст сообщения. В тело сообщения могут быть добавлены аргументы. Пример:
	message	String	Напряжение = <b>{0}</b> В, Температура = <b>{1}</b> *С
Внутренние	old	bool	Значение start на предыдущем цикле

Функция выполняет вывод произвольного текста с аргументами в окно пользовательских логов программы NTC Configurator.



Для просмотра логов нужно в главном окне программы NTC Configurator перейти «Дополнительно» > «Показать окно логов» > установить флаг «Complex Events».

Если на вход **send** <u>подключена константа</u> и ее значение True, то функция работает в режиме «давящего сигнала». При каждом исполнении функция пытается отправить сообщение.

Если на вход **send** <u>подключена переменная или выход другой функции</u>, то срабатывание происходит при переходе от False к True.

# 8.3.9 Функции доступа к периферийным устройствам

	Сигнатура	Тип	Описание
Входы	reset	bool	Сброс счётчика (если входная линия настроена как «счетчик импульсов»)
	voltage	int32	Напряжение (проходит через небольшую фильтрацию алгоритмами устройства)
Выходы	value	int32	Тип значения зависит от настройки входной линии: «Дискретная» – состояние сработки «1» или «0»; «Аналоговая» – напряжение в мВ <i>(без фильтрации)</i> ; «Частотная» – частота в Гц; «Счетная» – количество посчитанных импульсов.
Настройки	index	uint8	Номер входной линии устройства



Для работы функции, в конфигурации устройства соответствующая входная линия не должна быть отключена. Конфигурация > Входные линии > Использовать как > любое значение кроме «Не

Конфигурация > Входные линии > Использовать как > любое значение кроме «Не используется».

### 8.3.9.2 ОИТРИТ – выход

	Сигнатура	Тип	Описание
Входы	value	int32	Состояние выходной линии, которое необходимо установить. Логика зависит от настройки линии. <b>«Общего назначения»:</b> <b>«1»</b> - включить (замкнуть на массу) <b>«0»</b> - выключить. <b>«Зуммер»</b> <i>(только OUT_1)</i> : Частота (Гц), которую необходимо генерировать на выходе.
Настройки	index	uint8	Номер выходной линии



Для работы функции, в конфигурации устройства соответствующая выходная линия должна быть настроена определенным образом.

Конфигурация > Выходные линии > Использовать как > «Общего назначения». Для линии OUT_1 допустима настройка «Зуммер».

Блок работает в режиме «давящего сигнала». При каждом исполнении блок пытается установить состояние выходной линии, которое задано входным значением.

### 8.3.9.3 HYGRO – гигрометр

	Сигнатура	Тип	Описание
Выходы	temperature	float	Температура, °С
	humidity	float	Влажность, %
Настройки	Index	uint8	Номер датчика температуры/влажности для отображения

#### 8.3.9.4 ACCEL – акселерометр

	Сигнатура	Тип	Описание
	X	int32	Текущее ускорение по оси акселерометра Х
	У	int32	Текущее ускорение по оси акселерометра Ү
	Ζ	int32	Текущее ускорение по оси акселерометра Z
	acc sqrt	int32	Квадратный корень из суммы квадратов ускорений по каждой оси
	int sqrt	int32	
	angle	int32	Угол наклона относительно местной (временной) вертикали
Выходы	pitch	int32	Угол тангажа: наклон вперед < 0 наклон назад >0
	roll	int32	Угол крена: крен влево < 0 крен вправо > 0
	calibrated	bool	Состояние калибровки акселерометра ( <i>true</i> - откалиброван)

## 8.3.9.5 ECODRIVE - EcoDrive

	Сигнатура	Тип	Описание
	speed	int32	Текущее значение скорости
	boost	int32	Текущее значение ускорения (после калибровки)
	retard	int32	Текущее значение торможения (после калибровки)
	drift_right	int32	Текущее значение ускорения вправо (после калибровки)
Выходы	drift_left	int32	Текущее значение ускорения влево (после калибровки)
	jump	int32	Текущее значение вертикального ускорения (после калибровки)
	belt	int32	
	light	int32	
	prm	int32	



Для работы функции, в конфигурации устройства должна быть настроена работа с модулем контроля качества вождения.

Конфигурация > EcoDriving > «Включить контроль качества вождения».

8.3.9.6 ONEWIRE_KEY – Информация о текущем ключе/карте на интерфейсах 1 Wire или RS-ххх (ближнего

## действия)

	Сигнатура	Тип	Описание
Выходы	ю	int32	Младшие 4 байта кода
	hi	int32	Старшие 4 байта кода
	valid	bool	Код находится в списке доверенных кодов устройства

8.3.9.7 RFID – Информация о текущей метке RFID на интерфейсе RS-xxx (беспроводная, дальнего

действия)

	Сигнатура	Тип	Описание
	lo	int32	Младшие 4 байта кода
	hi	int32	Старшие 4 байта кода
Выходы	pwr	int32	Мощность сигнала
	type	int32	
	valid	bool	Код находится в списке доверенных кодов устройства



Для работы функции, в конфигурации устройства должна быть настроена работа со считывателями RFID меток.

Конфигурация > RS-232/RS-485 > Устройство X > «Считыватель меток RFID».

## 8.3.9.8 TACHOGRAPH – Tachograph driver

	Сигнатура	Тип	Описание						
	code0_3	int32	0 3 байты кода карты						
	code4_7	int32	47 байты кода карты						
B. we min	code8_11	int32	8 11 байты кода карты						
выходы	code12_15	int32	12 15 байты кода карты						
	state	int32	Состояние водителя						
	type	int32							
	active	bool							
Настройки	index	uint8	Номер водителя (1-й или 2-ой)						



Для работы функции, в конфигурации устройства должна быть настроена работа с тахографом.

Конфигурация > RS-232/RS-485 > Устройство X > «Тахограф».

#### 8.3.9.9 GUARD – Режим охраны

	Сигнатура	Тип	Описание
Входы	enable	bool	Постановка/снятие с охраны: « <b>0</b> » – наблюдение « <b>1</b> » – охрана
	mode	int32	Текущий режим работы: «О» – наблюдение «1» – охрана
Выходы	error	int32	Код ошибки при смене режима охраны: <b>«1»</b> – выключен режим охраны в конфигурации устройства; <b>«2»</b> – не истёк таймаут запрета на смену режима; <b>«3»</b> – включён режим: не переходить в режим охраны при включённом зажигании; <b>«4»</b> – устройство уже в данном режиме; <b>«5»</b> – включен режим: не переходить в охрану, если сработал один из охранных датчиков
Настройки	type	uint8	Тип смены режима работы: «По уровню» - при каждом исполнении блок <u>устанавливает</u> режим работы согласно значению входа; «По восходящему фронту» - при каждом исполнении блок <u>переключает</u> режим работы не противоположный если состояние входа изменилось с «0» на «1».
Внутренние	old	bool	Значение <i>enable</i> на предыдущем цикле



Для работы функции, в конфигурации устройства должна быть настроена работа с охранными функциями.

Конфигурация > Режим охраны > «Использовать режим охраны»



Если тип смены режима работы задан «По уровню», то блок работает в режиме «давящего сигнала». При каждом исполнении блок пытается установить состояние режима, которое задано входным значением.

# 8.3.9.10 CRASH_FILE – Формирование файла ДТП

	Сигнатура	Тип	Описание					
Byonu	generate	bool	По восходящему фронту сформировать файл ДТП					
бходы	unlock	bool	По восходящему фронту снять блокировку от перезаписи					
			Файл ДТП формируется. Значение <i>true</i> устанавливается при					
	active	bool	начале формирования файла, значение <i>false</i> устанавливается					
BLIVOBLI			когда формирование файла завершено.					
выходы	timo	int32	Время создания файла в формате UNIX					
	ume	IIICJZ	(0 – файл ДТП отсутствует)					
	locked	bool	Устанавливается <i>true</i> если файл защищён от перезаписи					
D	<i>generate_old</i> bool		Значение generate на предыдущем цикле					
внутренние	unlock_old	bool	Значение <i>unlock</i> на предыдущем цикле					



Для работы функции, в конфигурации устройства должна быть настроена фиксация ДТП. Конфигурация > Акселерометр > Фиксация ДТП > «Включить фиксацию ДТП ...»

Если на вход **generate** <u>подключена константа</u> и ее значение True, то функция работает в режиме «давящего сигнала». При каждом исполнении функция пытается сделать фотоснимок.

Если на вход generate <u>подключена переменная или выход другой функции</u>, то срабатывание происходит при переходе от False к True.

	Сигнатура	Тип	Описание
	gsm off	bool	Отключить питание GSM модуля. Если <i>true</i> , то устройство закроет все установленные интернет соединения и отключит питание GSM модуля. Если <i>false</i> , то работа GSM модуля разрешена.
	gnss off	bool	Отключить питание GNSS модуля Если <i>true</i> , то устройство отключит питание навигационного модуля. Если <i>false</i> , то работа навигационного модуля разрешена.
Входы	battery off	bool	Отключить заряд батареи Если <i>true</i> , то устройство отключит зарядку встроенной аккумуляторной батареи (но продолжит питаться от нее). Если <i>false</i> , то зарядка встроенной аккумуляторной батареи производится в штатном режиме.
	periph off	bool	Отключить перефирию. Если <i>true</i> , то устройство отключит питание цифровых интерфейсов, для которых есть возможность отключения. Если <i>false</i> , то работа цифровых интерфейсов разрешена.
	events off	bool	Запрет формирования событий чёрного ящика. Если <i>true</i> , то устройство запретит формирование/запись событий черный ящик. Если <i>false</i> , то формирование/запись событий производится в штатном режиме в соответствии с конфигурацией.
Скрытые	sleep	bool	Войти в режим пониженного энергопотребления (ножка предусмотрена для будущего функционала)



Для работы функции, в конфигурации устройства должен быть настроен режим энергосбережения.

Конфигурация > Системные настройки:

.. > Включить «Использовать режим энергосбережения»

.. > Выбрать «... управляется функцией Complex Events»

#### 8.3.10 Функции доступа к цифровым портам

При работе со всеми цифровыми портами используются два буфера для приема и отправки данных: **RXD** (буфер для приема) и **TXD** (буфер для отправки).

Размеры буферов фиксированы:

- RXD буфер 128 байт;
- TXD буфер 64 байта.

В редакторе при отладке буферы изображены в виде массива байт, индексированных с *0* до *(размер_буфера - 1)*.



Процедуру отправки данных можно разделить на несколько основных этапов:

- Запись данных в TXD буфер;
- Отправка данных из TXD буфера через интерфейс.

8.3.10.1 RS_SEND – Отправить данные в последовательный порт

	Сигнатура	Тип	Описание		
Byonu	start bool Если true, функция совершает попытку отправки дан				
бходы	send size	int32	Количество байт для отправки через интерфейс.		
Выходы	state	int32	Состояние передатчика: <b>«О»</b> – нет активности; <b>«1»</b> – отправка данных:		
			« <b>-1</b> » – интерфейс недоступен (не настроен).		
Настройки	port	uint8	Выбор цифрового интерфейса.		

Функция выполняет отправку данных через последовательный интерфейс *port*. Для отправки берутся данные из ТХD буфера с позиции 0 до *(send_size - 1)*.

Для работы функции, в конфигурации устройства должен быть настроен соответствующий интерфейс. Конфигурация > RS-232/RS-485 > Устройство 1 > «Complex Events (асинхронный режим)». Процедуру приема данных можно разделить на несколько основных этапов:

- Прием данных из интерфейса в RXD буфер;
- Чтение данных из RXD буфера.

Incoming data

Если при отправке данных процедура крайне проста, то при работе с приемом данных следует учитывать важную особенность обработки данных – устройство способно принять неограниченно большой объем данных, но RXD буфер позволяет хранить не более 128 байт. При этом за один такт исполнения функции приема устройство помещает из интерфейса в RXD буфер не более 64 байт данных.

Если устройство будет выполнять прием данных, объем которых превышает 128 байт, то произойдет переполнение RXD буфера. При переполнении, RXD буфер хранит только последние 128 байт принятых данных.

Поэтому, если необходимо обработать данные, объем которых превышает 128 байт следует составить программу таким образом, что после каждого такта работы функции приема данных из интерфейса, выполняется обработка текущего содержимого RXD буфера. Этот подход позволит за несколько итераций обработать весь необходимый объем данных.

Ниже наглядно изображен процесс приема данных, объем которых немного превышает объем RXD буфера:

1. Функция приема данных обнаруживает новый входящий поток данных. На первом такте функция принимает 64 байта, увеличивает счетчик принятых данных *size* на 64 и помещает данные в RXD буфер, начиная с индекса 0.



2. На следующем такте функция принимает еще 64 байта, увеличивает счетчик принятых данных *size* на 64 и помещает данные в RXD буфер, начиная с индекса 64.

RXD buffer

												- Unit	bune				
00 08	01 09	02 0A	03 0B	04 0C	05 0D	06 0E	07 0F	index = 0	00 08	01 09	02 0A	03 0B	04 0C	05 0D	06 0E	07 0F	
10	11	12	13	14	15	16	17		10	11	12	13	14	15	16	17	
18	19	1A	1B	1C	1D	1E	1F		18	19	1A	1B	1C	1D	1E	1F	
20	21	22	23	24	25	26	27		20	21	22	23	24	25	26	27	
28	29	2A	2B	2C	2D	2E	2F		28	29	2A	2B	2C	2D	2E	2F	
30	31	32	33	34	35	36	37	aiza = 129	30	31	32	33	34	35	36	37	
38	39	3A	3B	3C	ЗD	3E	3F	SIZe = 120	38	39	ЗA	3B	3C	ЗD	3E	3F	128
40	41	42	43	44	45	46	47	Unset = 0	40	41	42	43	44	45	46	47	bytes
48	49	4A	4B	4C	4D	4E	4 F		48	49	4A	4B	4C	4D	4E	4 F	1
50	51	52	53	54	55	56	57		50	51	52	53	54	55	56	57	
58	59	5A	5B	5C	5D	5E	5F		58	59	5A	5B	5C	5D	5E	5F	
60	61	62	63	64	65	66	67		60	61	62	63	64	65	66	67	
68	69	6A	6B	6C	6D	6E	6F		68	69	6A	6B	6C	6D	6E	6F	
70	71	72	73	74	75	76	77		70	71	72	73	74	75	76	77	
78	79	7A	7B	7C	7D	7E	7F		78	79	7A	7B	7C	7D	7E	7F	
80	81	82	83	84	85	86	87		11	1.1	1.1	1.1	1.1	1.1	1.1		13
88	89	8A	8B	8C	8D	8E	8F										

3. На следующем такте функция принимает оставшиеся данные (*X байт*), увеличивает счетчик принятых данных *size* на *X*. Стирает первые *X* байт в RXD буфере. Смещает содержимое RXD буфера на *X* байт «влево» (т.е. байт по индексу *X-1* теперь будет располагаться по индексу 0). Увеличивает счетчик переполнения *offset* на *X*. Помещает данные в RXD буфер, начиная с индекса (*128-X*).

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F			ln	comin	g data	)							RXD	buffer				
10       11       12       13       14       15       16       17         18       19       1A       1B       1C       1D       1E       1F         20       21       22       23       24       25       26       27         28       29       2A       2B       2C       2D       2E       2F         30       31       32       33       34       35       36       37         38       39       3A       3B       3C       3D       3E       3F         40       41       42       43       44       45       46       47         48       49       4A       4B       4C       4D       4E       4F         50       51       52       53       54       55       56       57         58       59       5A       5B       5C       5D       5E       5F         60       61       62       63       64       65       66       67         70       71       72       73       74       75       76       77         78       79       7A       7B <th>00 08</th> <th>01 09</th> <th>02 0A</th> <th>03 0B</th> <th>04 0C</th> <th>05 0D</th> <th>06 0E</th> <th>07 0F</th> <th></th> <th>::</th> <th>3</th> <th>1</th> <th>2</th> <th>1</th> <th>2</th> <th>1</th> <th>1</th> <th></th>	00 08	01 09	02 0A	03 0B	04 0C	05 0D	06 0E	07 0F		::	3	1	2	1	2	1	1	
20       21       22       23       24       25       26       27         28       29       2A       2B       2C       2D       2E       2F         30       31       32       33       34       35       36       37         38       39       3A       3B       3C       3D       3E       3F         40       41       42       43       44       45       46       47         48       49       4A       4B       4C       4D       4E       4F         50       51       52       53       54       55       56       57         58       59       5A       5B       5C       5D       5E       5F         60       61       62       63       64       65       66       67         68       69       6A       6B       6C       6D       6E       6F         70       71       72       73       74       75       76       77         78       79       7A       7B       7C       7D       7E       7F         80       81       82       84 <td>10 18</td> <td>11 19</td> <td>12 1A</td> <td>13 1B</td> <td>14 1C</td> <td>15 1D</td> <td>16 1E</td> <td>17 1F</td> <td>index = 0</td> <td>10 18</td> <td>11 19</td> <td>12 1A</td> <td>13 1B</td> <td>14 1C</td> <td>15 1D</td> <td>16 1E</td> <td>17 1F</td> <td></td>	10 18	11 19	12 1A	13 1B	14 1C	15 1D	16 1E	17 1F	index = 0	10 18	11 19	12 1A	13 1B	14 1C	15 1D	16 1E	17 1F	
30       31       32       33       34       35       36       37         38       39       3A       3B       3C       3D       3E       3F       size = 144       38       39       3A       3B       3C       3D       3E       3F         40       41       42       43       44       45       46       47         48       49       4A       4B       4C       4D       4E       4F         50       51       52       53       54       55       56       57         58       59       5A       5B       5C       5D       5E       5F         60       61       62       63       64       65       66       67         68       69       6A       6B       6C       6D       6E       6F       68       69       6A       6B       6C       6D       6E       6F         70       71       72       73       74       75       76       77       78       79       7A       7B       7C       7D       7E       7F         80       81       82       83       84	20 28	21 29	22 2 A	23 2B	24 2C	25 2D	26 25	27 2 F		20 28	21 29	22 2 A	23 2B	24 2C	25 2D	26 25	27 2F	
30       31       42       43       44       45       46       47       offset=16       40       41       42       43       44       45       46       47         48       49       4A       4B       4C       4D       4E       4F       48       49       4A       4B       4C       4D       4E       4F       50       51       52       53       54       55       56       57       50       51       52       53       54       55       56       57       50       51       52       53       54       55       56       57       50       51       52       53       54       55       56       57       50       51       52       53       54       55       56       57       50       51       52       53       54       55       56       57       58       59       5A       5B       5C       5D       5E       5F       60       61       62       63       64       65       66       67       60       61       62       63       64       65       66       67       70       71       72       73       74       75	30 38	31 39	32 3A	33 3B	34 30	35 3D	36 3 F	37 3 F	size = 144	30 38	31 39	32 3A	33 3B	34 30	35 3D	36 3 ह	37 3 F	
10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <td< td=""><td>40</td><td>41</td><td>42 42</td><td>43 4 P</td><td>44 4C</td><td>45 4D</td><td>46 4E</td><td>47 47</td><td>offset = 16</td><td>40</td><td>41 49</td><td>42</td><td>43 4 P</td><td>44 4C</td><td>45 45</td><td>46 45</td><td>47 47</td><td>100</td></td<>	40	41	42 42	43 4 P	44 4C	45 4D	46 4E	47 47	offset = 16	40	41 49	42	43 4 P	44 4C	45 45	46 45	47 47	100
50       59       54       56       50       54       55       55       56       59       54       56       50       54       56       50       54       55       50       52       50       54       55       50       54       55       50       54       55       50       54       55       50       54       55       50       54       56       50       54       56       66       67       60       61       62       63       64       65       66       67       68       69       68       69       64       65       66       67       68       69       64       68       60       62       63       64       65       66       67         70       71       72       73       74       75       76       77       70       71       72       73       74       75       76       77         78       79       7A       7B       7C       7D       7E       7F       78       79       7A       7B       7C       7D       7E       7F         80       81       82       83       84       85       86	50	51 50	52	53 57	54	55 55	56	57		50	51	52	53 57	54	55 55	56	57	bytes
68       69       6A       6B       6C       6D       6E       6F         70       71       72       73       74       75       76       77       70       71       72       73       74       75       76       77         78       79       7A       7B       7C       7D       7E       7F       78       79       7A       7B       7C       7D       7E       7F         80       81       82       83       84       85       86       87       88       89       8A       8B       8C       8D       8E       8F       88       89       8A       8B       8C       8D       8E       8F       8E	50 60	59 61	5A 62	5В 63	64	5D 65	5E 66	5F 67		60	59 61	5A 62	5В 63	64	5D 65	5E 66	5r 67	
78       79       78       79       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       79       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78       78 <td< td=""><td>68 70</td><td>69 71 70</td><td>6A 72</td><td>6В 73 7р</td><td>6C 74 72</td><td>6D 75 75</td><td>6E 76 78</td><td>6F 77 77</td><td></td><td>68 70 70</td><td>69 71 70</td><td>6A 72</td><td>6В 73 7р</td><td>6C 74 72</td><td>6D 75 75</td><td>6E 76 75</td><td>6F 77 77</td><td></td></td<>	68 70	69 71 70	6A 72	6В 73 7р	6C 74 72	6D 75 75	6E 76 78	6F 77 77		68 70 70	69 71 70	6A 72	6В 73 7р	6C 74 72	6D 75 75	6E 76 75	6F 77 77	
	80	81 89	82 8A	83 88	84 8C	85 8D	86 8E	87 87		80	81 89	82 8A	83 88	84 8C	85 8D	86 8E	87 87	

8.3.10.2 RS_RECV – Принять данные из последовательного порта

	Сигнатура Тип Описание						
Byony	enabled	bool	Если true, функция ожидает входящие данные от интерфейса.				
			Если <i>true</i> , функция очистит RXD буфер (все байты будут				
входы	reset	Bool	установлены в 0х00) и следующие данные будут записываться				
			начиная с индекса 0.				
			Состояние приемника:				
			« <b>0</b> » - прием отключен;				
	stato	int32	<b>«1»</b> - ожидание данных;				
	State	IIICJZ	« <b>2</b> » - прием данных;				
			« <b>3</b> » - данные приняты;				
Выходы			<ul><li>«-1» - интерфейс недоступен (не настроен);</li></ul>				
	size	int32	Размер полученного массива данных. Полученные данные сразу				
	5120	111.52	помещаются в RXD буфер.				
		int32	Количество потерянных данных из-за переполнения RXD				
	offset		буфера (если принято более 128 байт). В буфере всегда				
			находятся последние 128 байт полученных данных.				
			Цифровой интерфейс, которым управляет функция. Если				
	port	uint8	выбранный интерфейс не настроен, то функция сформирует				
			ошибку <i>state = -1</i> .				
Настройки			Время после приема последнего байта, по истечение которого				
	timeout	uint16	считается, что прием данных завершен <i>state = 3</i> . Следующие				
	lincoul	unitio	данные будут считаться новыми и будут записаны в RXD буфер				
			с индекса 0.				

Функция выполняет прием данных через последовательный интерфейс *port*. Когда функция фиксирует начало передачи данных *(state = 1)*, то первые полученные байты копируются в RXD буфер, начиная с индекса 0. За один такт работы, функция способна получить из интерфейса 64 байта. Если количество входящих данных больше 64 байт, то процесс получения будет выполнен за несколько тактов *(state = 2)*, при этом оставшиеся данные будут дописываться в RXD буфер начиная с индекса 64. Функция зафиксирует конец приема данных *(state = 3)*, если после приема последнего байта истек *timeout*. Следующие данные будут считаться новыми и будут записаны в RXD буфер с индекса 0.



Для работы функции, в конфигурации устройства должен быть настроен соответствующий интерфейс.

Конфигурация > RS-232/RS-485 > Устройство 1 > «Complex Events (асинхронный режим)».

В качестве частного случая обмена данными предусмотрена функция для выполнения транзакции типа «запрос/ответ». Эту процедуру можно разделить на несколько основных этапов:

- Запись данных в TXD буфер;
- Отправка данных из буфера TXD через интерфейс;
- Прием данных из интерфейса в RXD буфер;
- Чтение данных из RXD буфера.

	Сигнатура	натура Тип Описание				
	start	bool	Если <i>true</i> , функция пытается начать транзакцию.			
Входы	send size	int32	Размер массива данных из TXD буфера, для отправки.			
	require size	int32	Размер ожидаемого ответа.			
	andad	bool	Сигнал завершения транзакции. Сигнал не устанавливается,			
	enueu	1000	если интерфейс не настроен <i>(state = -1)</i> .			
			Состояние транзакции:			
			<b>«О»</b> - нет активности;			
			«1» - ожидание доступа к интерфейсу;			
			«2» - доступ к интерфейсу получен;			
Выходы	state	int32	<b>«З»</b> - транзакция в процессе;			
			«4» - транзакция завершена успешно;			
			<ul><li>«-1» - интерфейс недоступен (не настроен);</li></ul>			
			«-2» - истек таймаут ожидания ответа;			
			«-3» - неизвестная ошибка.			
	racy siza	int32	Размер полученного массива данных. Полученные данные сразу			
	1007 5120	111.52	помещаются в RXD буфер.			
			Цифровой интерфейс, которым управляет функция. Если			
	port	uint8	выбранный интерфейс не настроен, то функция сформирует			
			ошибку <i>state = -1</i> .			
Настройки			Время, в течение которого после отправки данных функция			
	timeout	uint16	ожидает ответ. Если за отведенное время получено количество			
	lincoul	unitio	байт ≤ <i>require size</i> , то транзакция завершается с ошибкой <i>state</i>			
			= -2.			

8.3.10.3 RS_TRANS – Запрос/ответ через последовательный порт

Функция выполняет отправку данных через последовательный интерфейс *port*. Для отправки берутся данные из TXD буфера в диапазоне от 0 до *(send size - 1)*. Далее функция ожидает ответ в течение времени *timeout* или пока в RXD буфер не поступят данные длиной ≥ *require size*.

6

Для работы функции, в конфигурации устройства должен быть настроен соответствующий интерфейс.

Конфигурация > RS-232/RS-485 > Устройство X > «Complex Events (транзакция)».

Для работы с RXD и TXD буферами используется набор функций, которые позволяют выполнить основные операции чтения/записи и преобразования данных.

### 8.3.10.4 RXD_GET – Прочитать значение из RXD буфера

Функция обновлялась. Текущая реализация используется с версии редактора v3.4.1

	Сигнатура	Тип	Описание
Входы	index	int32	Позиция в буфере RXD, начиная с которой необходимо выполнить чтение. Самый первый элемент буфера имеет индекс 0.
	size	int32	Количество байт, которые необходимо прочитать из буфера RXD в каждый выход valueX. Допустимые значения от 1 до 4.
	value₀	int32/float	Прочитанное значение 0
B. we m.	<i>value</i> 1	int32/float	Прочитанное значение 1
Быходы			
	value _{N-1}	int32/float	Прочитанное значение <i>N-1</i>
	N	uint8	Количество выходов value
Настройки	endian	uint8	Порядок байт, который будет использован при копировании элементов буфера на выход <i>value</i> . Например RXD = [01,02,03,04,05,], <i>index</i> = 0, <i>size</i> = 4: <b>«Младшим вперед»</b> <i>value</i> = 0x04030201. <b>«Старшим вперед»</b> <i>value</i> = 0x01020304. <b>«Старшим вперед (2 байта)»</b> <i>value</i> = 0x03040102.
	sign	bool	Если флаг установлен, то функция будет воспринимать прочитанные данные как отрицательное число, если старший бит равен «1».

Функция выполняет последовательное чтение буфера RXD для каждого выхода *valueX*. Чтение начинается с индекса *index*. Функция читает *size* байт и передает их на выход *valueX*. Затем индекс чтения смещается на *size*, после чего производится чтение для следующего выхода *valueX*. В результате из буфера будет прочитан диапазон байт от *index* до *(index+(size*N)-1)*.

Логика работы функции зависит от типа данных:

- Если к выходу valueX подключена переменная с типом FLOAT и вход size = 4, то функция читает данные из буфера по стандарту IEEE754. Такой способ необходимо использовать для значений, которые хранятся <u>в формате Float</u> (например, значение 12.6). - Иначе функция читает данные как INT32.

Конвертация выполняется автоматически при помощи функций <u>FROM_FLOAT</u> и <u>TO_FLOAT</u>.

### 8.3.10.5 RXD_CMP – Поиск данных в RXD буфере

	Сигнатура	Тип	Описание
Вход	index	int32	Позиция в буфере RXD, начиная с которой будет произведен поиск. Самый первый элемент буфера имеет индекс 0.
Выход	result	int32	Результат поиска: «≥0» - Данные <u>найдены</u> , индекс элемента буфера, следующего сразу <u>после</u> найденной последовательности данных. «-1» - Данные <u>не найдены</u> .
Настройки	data	bin	Последовательность для поиска в RXD буфере. Задается в HEX "3120322033" или ASCII "1 2 3".
Внутренние	size	uint8	Размер поля <i>data.</i>

Пример:

Если в RXD = [01,02,03,04,05,06...], *index* = 0, *data* = [0203], то *value* = 3 Если в RXD = [01,02,03,04,05,06...], *index* = 2, *data* = [0203], то *value* = -1 Если в RXD = [01,02,03,04,05,06...], *index* = 0, *data* = [3322], то *value* = -1

8.3.10.6 RXD_STR2INT – Преобразовать строку из RXD буфера в целое число

	Сигнатура	Тип	Описание	
Вход	index	int32	Позиция в RXD буфере, на которой расположено INT значение.	
Выход	value	int32	Прочитанное значение. Если значение не прочитано, то <i>value</i> = 0	

Начиная с позиции *index* функция пытается прочитать INT значение, хранящееся как строка в кодировке ASCII.

Пример:

Буфер RXD = [7a,67,2d,32,2e,36,66...]. В кодировке ASCII это строка "zg-2.6f". Если *index* = 2, то *value* = -2 Если *index* = 3, то *value* = 2 Если *index* = 4, то *value* = 0

8.3.10.7 RXD_STR2FLOAT – Преобразовать строку из RXD буфера в число с плавающей точкой

	Сигнатура	Тип	Описание
Вход	index	int32	Позиция в RXD буфере, на которой расположено FLOAT значение.
Выход	value	int32	Прочитанное значение. Если значение не прочитано, то <i>value</i> = 0

Начиная с позиции *index* функция пытается прочитать FLOAT значение, хранящееся как строка в кодировке ASCII.

Пример: Буфер RXD = [7a,67,2d,32,2e,36,66...]. В кодировке ASCII это строка "zg-2.6f". Если *index* = 2, то *value* = -2.6 Если *index* = 3, то *value* = 2.6 Если *index* = 4, то *value* = 0 8.3.10.8 RXD_CHECKSUM – Проверка контрольной суммы в RXD буфере

	Сигнатура	Тип	Описание			
	index	int32	Описание Позиция в RXD буфере, начиная с которой производится расчет. Длина массива данных для расчета CRC. Позиция в RXD буфере, на которой расположено значение, с которым будет сравниваться рассчитанное CRC. Результат проверки CRC. Алгоритм расчета CRC: «CRC-16 (Modbus)» Стандартный алгоритм CRC-16 Modbus. «CRC-8 (Maxim/Dallas)» Стандартный алгоритм CRC-8 Maxim/Dallas. «XOR (8 bits)» Последовательная операция XOR.			
Вход	size	int32	Длина массива данных для расчета CRC.			
	valued index	int32	Позиция в RXD буфере, на которой расположено значение, с которым будет сравниваться рассчитанное CRC.			
Выход	valid	bool	Результат проверки CRC.			
	type	uint8	Алгоритм расчета СКС: <b>«CRC-16 (Modbus)»</b> Стандартный алгоритм CRC-16 Modbus. <b>«CRC-8 (Maxim/Dallas)»</b> Стандартный алгоритм CRC-8 Maxim/Dallas. <b>«XOR (8 bits)»</b> Последовательная операция XOR. <b>«Сумма (8 bits)»</b> Последовательное сложение элементов.			
Настройки	options	uint8	«Порядок байт» - Порядок байт, при сравнении СRC (если расчетное CRC = 0x0201). «Младшим вперед» Будет использовано значение 0x0102. «Старшим вперед» Будет использовано значение 0x0201. «Инвертировать» Если флаг установлен, то перед сравнением CRC будет побитово инвертировано. Например, если было 0x0201, то будет 0xfdfe. «Добавить 1» Если флаг установлен, то перед сравнением CRC будет увеличено на 1. Например, если было 0x0201, то будет 0x0202.			

Функция выполняет расчет CRC по RXD буферу, начиная с *index* до *(index+size-1)*. Рассчитанное CRC сравнивается со значением, хранящемся в RXD буфере начиная с позиции *value index*.

0

Операции "Порядок байт", "Инвертировать", "Добавить 1" выполняются после расчета CRC по очереди в порядке перечисления и влияют на финальное значение, используемое при сравнении.

8.3.10.9 TXD_INIT – Инициализация TXD буфера

	Сигнатура	Тип Описание			
Вход	enahle	bool	Если <i>true</i> , то выполняется инициализация TXD буфера данными		
	Chable	1000	пользователя.		
Настройки	data	hin	Последовательность для инициализации ТХD буфера.		
	Uala	DIT	Задается в НЕХ "3120322033" или ASCII "1 2 3".		
Внутренние	size uint8		Количество байт, которые будут записаны в ТХD буфер		

Функция заполняет TXD буфер данными, введенными пользователем, начиная с 0 индекса. Если длина последовательности пользователя меньше, чем длина буфера, то оставшиеся ячейки заполняются 0х00.

# 8.3.10.10 TXD_SET – Запись значения в TXD буфер

Функция обновлялась. Текущая реализация используется с версии редактора v3.4.1

	Сигнатура	Тип	Описание	
	enable	bool	Если true, то выполняется запись значения в буфер.	
	index int32		Позиция в ТХD буфере, начиная с которой производится	
			Запись.	
Вхолы	size	int32	Количество байт, которые будут взяты с входа <i>valuex</i> и записаны в буфер (от 1 до 4 байт)	
Бходы	value	int32/float	Значение 0, которое необходимо записать в буфер.	
	<i>value</i> 1	int32/float	Значение 1	
	value _{N-1}	int32/float	Значение <i>N-1</i>	
	N	uint8	Количество входов <i>value</i>	
			Порядок байт, который будет использован при записи в буфер.	
			0x44332211:	
Настройки			«Младшим вперед»	
пастройки	endian	uint8	После записи TXD = [01,11,22,33,44,]	
			«Старшим вперед»	
			После записи TXD = [01,44,33,22,11,]	
			«Старшим вперед (2 байта)»	
			После записи TXD = [01,22,11,44,33,]	

Функция выполняет последовательную запись значений *valueX* размером от 1 до 4 байт в ТХD буфер начиная с позиции *index*. В отличие от функции инициализации, эта функция затрагивает только байты в диапазоне от *index* до *(index+(size*N)-1)*.

Логика работы функции зависит от типа данных:

- Если ко входу **value** подключена **переменная** с типом **FLOAT** и вход **size = 4**, то функция записывает данные по стандарту IEEE754. Такой способ необходимо использовать для значений, которые хранятся <u>в формате Float</u> (например, значение 12.016).

- Иначе функция записывает данные как целое число. Такой способ необходимо использовать для значений <u>в форматах Int или Uint</u> (Например, так следует записать число 43605).

Конвертация выполняется автоматически при помощи функций <u>FROM_FLOAT</u> и <u>TO_FLOAT</u>.

8.3.10.11 TXD_CHECKSUM – Записать контрольную сумму в TXD буфер

	Сигнатура	Тип	Описание	
	enable	bool	Если <i>true</i> , функция выполняет расчет CRC.	
Bwo zu i	index	int32	Позиция в ТХD буфере, начиная с которой производится расчет.	
бходы	size	int32	Длина массива данных для расчета CRC.	
	value index	int32	Позиция в TXD буфере, начиная с которой будет записано рассчитанное CRC.	
	type	uint8	Алгоритм расчета СRC: <b>«CRC-16 (Modbus)»</b> Стандартный алгоритм CRC-16 Modbus. <b>«CRC-8 (Maxim/Dallas)»</b> Стандартный алгоритм CRC-8 Maxim/Dallas. <b>«XOR (8 bits)»</b> Последовательная операция XOR. <b>«Сумма (8 bits)»</b> Последовательное сложение элементов.	
Настройки	ки options uint8	uint8	«Порядок байт» - Порядок байт, перед записью СRС (если расчетное CRC = 0x0201). «Младшим вперед» Будет записано значение 0x0102. «Старшим вперед» Будет записано значение 0x0201. «Инвертировать» Если флаг установлен, то перед записью CRC будет побитово инвертировано. Например, если было 0x0201, то будет 0xfdfe. «Добавить 1» Если флаг установлен, то перед записью CRC будет увеличено на 1. Например, если было 0x0201, то будет 0x0202.	

Функция выполняет расчет CRC по TXD буферу, начиная с *index* до *(index+size-1)*. Рассчитанное CRC записывается в TXD буфер начиная с позиции *value index*.

1

Операции "Порядок байт", "Инвертировать", "Добавить 1" выполняются после расчета СRС по очереди в порядке перечисления и влияют на финальное значение, используемое при записи.

Функция обновлялась. Текущая реализация используется с версии редактора v3.4.1

	Сигнатура	Тип	Описание
Входы	index	int32	Позиция в буфере ТХD, начиная с которой необходимо выполнить чтение. Самый первый элемент буфера имеет инлекс 0.
	size	int32	Количество байт, которые необходимо прочитать из буфера ТХD. Допустимые значения от 1 до 4.
Выходы	value	int32   float	Прочитанное значение.
Настройки	endian	uint8	Порядок байт, который будет использован при копировании элементов буфера на выход <i>value</i> . Например RXD = [01,02,03,04,05,], <i>index</i> = 0, <i>size</i> = 4: <b>«Младшим вперед»</b> <i>value</i> = 0x04030201. <b>«Старшим вперед»</b> <i>value</i> = 0x01020304. <b>«Старшим вперед (2 байта)»</b> <i>value</i> = 0x03040102.
	sign	bool	Если флаг установлен, то функция будет воспринимать прочитанные данные как отрицательное число, если старший бит равен «1».

Логика работы функции зависит от типа данных: - Если к выходу **value** подключена **переменная** с типом **FLOAT** и вход **size = 4**, то функция читает данные из буфера по стандарту IEEE754. Такой способ необходимо использовать для значений, которые хранятся <u>в формате Float</u> (например, значение 12.6). - Иначе функция читает данные как INT32. Конвертация выполняется автоматически при помощи функций <u>FROM FLOAT</u> и <u>TO FLOAT</u>. Для удобства приема и отправки данных по протоколу ModBus предусмотрены специальные функции <u>MODBUS READ</u> и <u>MODBUS WRITE</u>, которые фактически являются доработанными вариантами <u>RS TRANS</u>. Процесс обмена данными значительно упрощается относительно универсальных функций обмена данными, т.к. функция сама составляет запрос/команду, сама контролирует получение ответа, и сама производит разбор данных.

	Сигнатура	Тип	Описание		
Входы	enable	bool	Отправка запросов разрешена		
	valid	bool	True, если на последний запрос был получен корректный		
	Vallu		ответ и значения на выходах valueX актуальны		
			Состояние:		
			« <b>0</b> » – не активен		
			«1» – ожидание доступа к интерфейсу		
			«2» – доступ к интерфейсу получен		
	state	int32	«З» – транзакция в процессе		
Выходы			«4» – транзакция завершена успешно		
			<ul><li>«-1» – интерфейс недоступен (не настроен)</li></ul>		
			«-2» – истек таймаут ожидания ответа		
			<ul><li>«-3» – неизвестная ошибка</li></ul>		
	value₀	int32/float/bool	Последнее прочитанное значение 0.		
	value1	int32/float/bool	Последнее прочитанное значение 1		
	value _{N-1}	int32/float/bool	Последнее прочитанное значение <i>N-1</i>		
	N	uint8	Количество выходов value		
			Цифровой интерфейс, которым управляет функция. Если		
	port	uint8	выбранный интерфейс не настроен, то функция сформирует		
			ошибку <i>state = -1</i> .		
		uint16	Период повторной отправки запроса если на входе enable		
	period		удерживается значение <i>true</i> . Повтор выполняется как в		
			случае ошибки, так и в случае успешного завершения		
			транзакции.		
	timeout	uint16	Время, в течение которого после отправки данных функция		
			ожидает ответ. Если корректный ответ не получен, то		
			транзакция завершается с ошибкой <i>state = -2</i> .		
	function	uint8	Функция ModBus, с помощью которой считываются данные		
	number	uint8	Сетевой номер, опрашиваемого датчика		
	address	uint16	Адрес запрашиваемых данных		
Изатройии			Тип параметра для чтения:		
пастроики			uint8 – однобайтовое число без знака;		
			int8 – однобайтовое число со знаком;		
	type	uint8	uint16 – двухбайтовое без знака;		
			int16 – двухбайтовое со знаком;		
			int32/float – четырехбайтовое со знаком /		
			вещественное.		
			Порядок байт, который будет использован при копировании		
			полученных данных на выход <i>value</i> .		
			Например, данные = [01,02,03,04], <i>type</i> = int32:		
			«Младшим вперед»		
	endian	uint8	<i>value</i> = 0x04030201.		
			«Старшим вперед»		
			<i>value</i> = 0x01020304.		
			«Старшим вперед (2 байта)»		
			<i>value</i> = 0x03040102.		
Внутренние	count	int32	Внутренний счётчик таймаута		

8.3.10.13 MODBUS_READ – Чтение данных по протоколу Modbus RTU

Например, настроим функцию так:

Параметр	Значение
N	3
port	RS-485
period	1000 ms
timeout	100 ms
function	(03) Чтение регистров ввода
number	17
address	107 (0x6B)
type	int16
endian	Старшим вперед

Примеры сформированного запроса и ожидаемого ответа:

	Запрос		Ответ
Значение (НЕХ)	Название поля ModBus	Значение (НЕХ)	Название поля ModBus
11	Сетевой номер датчика	11	Сетевой номер датчика
03	Функция ModBus	03	Функция ModBus
00	Адрес первого регистра (Ні байт)	06	Количество байт данных
6B	Адрес первого регистра (Lo байт)	AE	Значение регистра 0х006В (Ні байт)
00	Количество регистров (Ні байт)	41	Значение регистра 0х006В (Lo байт)
03	Количество регистров (Lo байт)	56	Значение регистра 0х006С (Ні байт)
76	СRС (Ні байт)	52	Значение регистра 0x006С (Lo байт)
87	CRC (Lo байт)	43	Значение регистра 0x006D (Ні байт)
		40	Значение регистра 0x006D (Lo байт)
		49	СRС (Ні байт)
		AD	CRC (Lo байт)

Устройство сформирует запрос и попытается выполнить его отправку через интерфейс RS-485. После отправки, устройство в течение 100 ms будет ожидать ответ.

После получения данных устройство проверит формат пакета на соответствие протоколу ModBus, проверит ожидаемую функцию и контрольную сумму. Если все проверки пройдены, то на выходах будут следующие значения:

*valid* = true

*value0* = 0xAE41

*value1* = 0x5652

*value2* = 0x4340

Если ответ за отведенное время не получен, то на выходах *valueX* останутся предыдущие значения, на выход *valid* примет значение false.

Если на входе *enable* останется значение true, то через 1000 ms после начала предыдущей транзакции функция повторит отправку запроса и разбор ответа.

При работе функции используются универсальные буферы <u>RXD и TXD</u>

Для работы функции, в конфигурации устройства должен быть настроен соответствующий интерфейс. Конфитурация > BS 222/BS 485 > Устройство X > «Complex Events (троизокция)»

Конфигурация > RS-232/RS-485 > Устройство X > «Complex Events (транзакция)».

Логика работы функции зависит от типа данных:

Если к выходу value подключена переменная с типом FLOAT и type = int32/float, то функция читает данные из буфера по стандарту IEEE754. Такой способ необходимо использовать для значений, которые хранятся <u>в формате Float</u> (например, значение 12.6).
 Иначе функция читает данные как INT32.

Конвертация выполняется автоматически при помощи функций <u>FROM_FLOAT</u> и <u>TO_FLOAT</u>.

# 8.3.10.14 MODBUS_WRITE – Запись данных по протоколу Modbus RTU

	Сигнатура	Тип	Описание	
	enable	bool	Отправка команд разрешена	
	<i>value</i> ₀	int32/float/bool	Записываемое значение 0.	
Входы	value1	int32/float/bool	Записываемое значение 1	
	value _{N-1}	int32/float/bool	Записываемое значение <i>N-1</i>	
	actual	bool	True, если на последнюю команды был получен корректный	
	actuar	0001	ответ и значения на входах valueX успешно записаны	
			Состояние:	
			« <b>0</b> » – не активен	
			«1» – ожидание доступа к интерфейсу	
Выходы			« <b>2</b> » – доступ к интерфейсу получен	
	state	int32	«3» – транзакция в процессе	
			« <b>4</b> » – транзакция завершена успешно	
			«-1» – интерфейс недоступен (не настроен)	
			«-2» – истек таймаут ожидания ответа	
		1.10	«-3» – неизвестная ошиока	
	/V	uinta	КОЛИЧЕСТВО ВХОДОВ <i>Value</i>	
	nort	uint0	цифровой интерфейс, которым управляет функция. Если	
	port	uint8	выоранный интерфейс не настроен, то функция сформирует	
		uint16	Ошиоку <i>State = -1</i> .	
	period		Период повторной отправки команды если на входе епаре	
			Время в течение которого после отправки данных функция	
	timeout	uint16	ожилает ответ. Если корректный ответ не получен то	
	lineout	differo	транзакция завершается с ошибкой <i>state = -2</i> .	
	function	uint8	Функция ModBus, с помощью которой записываются данные	
	number	uint8	Сетевой номер, опрациваемого датчика	
	address	uint16	Адрес для записи данных	
Цастройци			Тип параметра для записи:	
пастроики			uint8 – однобайтовое число без знака;	
			int8 – однобайтовое число со знаком;	
	type	uint8	uint16 – двухбайтовое без знака;	
			int16 – двухбайтовое со знаком;	
			int32/float – четырехбайтовое со знаком /	
			вещественное.	
			Порядок байт, который будет использован при копировании	
			значений со входов <i>valueX</i> в тело команды.	
			Например, значение = $0x01020304$ , <i>type</i> = int32/float:	
			«младшим вперед»	
	endian	uinta	IXD = [04,03,02,01]	
			«старшим вперед» ТVD – [01 02 02 04]	
			$I \wedge \nu \rightarrow [01, 02, 03, 04]$	
			T С Гаршим вперед (2 Одита)» T С С С С С С С С С С С С С С С С С С С	
Виутроцика	count	int32	или – [03,01,02] Внутренний сцётник таймаута	
Билльенияе	count	int JZ		

Например, настроим функцию так:

Параметр	Значение	Вход	Значение
N	1	value0	3
port	RS-485		
period	1000 ms		
timeout	100 ms		
function	(06) Запись одного регистра хранения		
number	17		
address	1 (0x01)		
type	uint8		
endian	Старшим вперед		

Примеры сформированной команды и ожидаемого ответа:

Команда		Ответ	
Значение (НЕХ)	Название поля ModBus	Значение (HEX)	Название поля ModBus
11	Сетевой номер датчика	11	Сетевой номер датчика
06	Функция ModBus	06	Функция ModBus
00	Адрес первого регистра (Ні байт)	00	Адрес первого регистра (Ні байт)
01	Адрес первого регистра (Lo байт)	01	Адрес первого регистра (Lo байт)
00	Устанавливаемое значение (Ні байт)	00	Установленное значение (Ні байт)
03	Устанавливаемое значение (Lo байт)	03	Установленное значение (Lo байт)
76	СRС (Ні байт)	76	СRС (Ні байт)
87	СRС (Lo байт)	87	СRС (Lo байт)

i

При отправке команды на установку одного регистра хранения в ответ ожидается эхо

Устройство сформирует команду и попытается выполнить ее отправку через интерфейс RS-485. После отправки, устройство в течение 100 ms будет ожидать ответ.

После получения данных устройство проверит формат пакета на соответствие протоколу ModBus, проверит ожидаемую функцию и контрольную сумму. Если все проверки пройдены, то на выходе *actual* будет установлено значение true.

Если ответ за отведенное время не получен, то выход *actual* примет значение false.

Если на входе *enable* останется значение true, то через 1000 ms после начала предыдущей транзакции функция повторит отправку команды и разбор ответа.

При работе функции используются универсальные буферы <u>RXD и TXD</u>

Для работы функции, в конфигурации устройства должен быть настроен соответствующий интерфейс.

Конфигурация > RS-232/RS-485 > Устройство X > «Complex Events (транзакция)».

Логика работы функции зависит от типа данных:

- Если ко входу **value** подключена **переменная** с типом **FLOAT** и **type** = **int32/float**, то функция записывает данные по стандарту IEEE754. Такой способ необходимо использовать для значений, которые хранятся <u>в формате Float</u> (например, значение 12.016).

- Иначе функция записывает данные как целое число. Такой способ необходимо использовать для значений <u>в форматах Int или Uint</u> (Например, так следует записать число 43605).

Конвертация выполняется автоматически при помощи функций <u>FROM_FLOAT</u> и <u>TO_FLOAT</u>.