

COMPLEX EVENTS
User manual

Version 1.6

Moscow

 2022

1

CONTENTS

1. CHANGE HISTORY .. 3
2. QUICK START ... 4
3. PROGRAM INTERFACE APPEARANCE .. 7
4. CREATING AND EDITING THE PROGRAM .. 8

4.1 General information ... 8
4.2 Description of elements in the Flowchart .. 8

4.2.1 Start and End blocks .. 8
4.2.2 Action block... 9
4.2.3 Condition block .. 9

4.3 Creating a Flowchart ...10
4.4 Description of Functional Blocks Scheme Elements ...11

4.4.1 Constants and variables ...11
4.4.2 Function blocks ...12

4.5 Creating a Function block diagram ..12
4.6 Flowchart description elements ..14

4.6.1 Name and Description of the block ...14
4.6.2 Text ...14
4.6.3 Rectangle ...14

4.7 Undo/Redo ...15
4.8 Automatic numbering of function blocks..15
4.9 Variables search..15
4.10 Operation with files ...16

5. PROGRAM BUILD ...17
6. PROGRAM DEBUG ..18

6.1 Start debugging ..18
6.2 Debugging for a running program ..18
6.3 Operation in debug mode ..18

6.3.1 Program status bar ...19
6.3.2 Controlling program execution ...19
6.3.3 Viewing diagram data values ...19
6.3.4 Execution time of the program loop ..19

6.4 Writing and reading a program without debugging ..20

7. SETTINGS ...21

7.1 Main ..21
7.2 Debug settings ...21
7.3 Color scheme..21

8. APPENDIX ...22

8.1 Shortcut keys ...22
8.2 Event codes Complex Events ..22
8.3 Function block library ..23

8.3.1 Main operations ..26
8.3.2 Math operations ..28
8.3.3 Logical operations ...32
8.3.4 Bitwise operations ...33
8.3.5 Relational operations ...36
8.3.6 Selection and limit operations ..37
8.3.7 Triggers, generators, counters ...40
8.3.8 Special functions ...46

2

8.3.9 Peripheries ...53
8.3.10 Access Functions to Digital Ports ..57

3

1. CHANGE HISTORY

Version 1.0 from 14.10.2021:

 The first version of the document.

Version 1.1 from 10.11.2021:

 Added section “Description of Blocks in the Block Diagram”;

 Added block “FROM_FLOAT”;
 Added block “CALENDAR”;

 Added new functions description in the “Color scheme” section.

Version 1.2 from 23.11.2021:

 Added description of drag'n'drop mode for moving blocks and functions to the diagram;

 Added section describing Undo / Redo operations.

Version 1.3 from 15.12.2021:

 Added section “Flowchart description elements”;
 Added new setting description in the "Debug settings" section;

 Added “DELAY” function;

 Added “NTC_CRASH_FILE” function;
 Updated “NTC_ACCEL” function description;

 Updated “TO_FLOAT” and “FROM_FLOAT” functions description.

Version 1.4 from 25.01.2022:

 Fixed description of "TP" function;
 Added description of “EVENT”, “SMS”, “CALL”, “CAM” functions;

 Added “USER_SMS” function;
 Added “RECV_SMS” function;

 Removed unused events in “List of CE Events Codes” section;

 Renamed the blocks from the “Peripheries” group in the “Function Blocks Library”;
 Added “PWRSAVE” function.

Version 1.5 from 07.04.2022:

 Changed description in the “General information” section;

 Added section “Description of Functional Blocks Scheme Elements”;
 Updated description of “TO_FLOAT”, “FROM_FLOAT”, “FLEX”, “USER_PARAM”, “USER_SMS”

“OUTPUT” functions;
 Added “APERTURE”, “RXD_GET”, “RXD_CMP”, “RXD_STR2INT”, “RXD_STR2FLOAT”,

“RXD_CHECKSUM”, “TXD_INIT”, “TXD_SET”, “TXD_SET”, “TXD_CHECKSUM”, “TXD_GET”,
“RS_TRANS”, “RS_SEND”, “RS_RECV” functions;

 Added section “Access Functions to Digital Ports”.

Version 1.6 from 21.06.2022:

 Updated description in the “Creating a Function block diagram” section;
 Added section “Automatic numbering of function blocks”;

 Added section “Variables search”;
 Updated description of “FLEX”, “RXD_GET”, “TXD_SET”, “TXD_GET” functions;

 Added “INFO”, “IMEI”, “ICCID”, “IMSI”, “LOG_MSG”, “MODBUS_READ”, “MODBUS_WRITE”
functions;

 Updated styles of the information frameworks.

4

2. QUICK START

Let's write a simple program to the value of a variable by 1.

For that:

1. Connect a device with support of Complex Events.
2. Run NTC Configurator.
3. Create a new configuration.

Figure 2.1 – Creation of new configuration

4. Click the Complex Events tab.
5. Tick – Use Complex Events and click the button Open Complex Events window.

Figure 2.2 – Launching of Complex Events editor

6. In the window that opens you should choose menu item File – New (or click on the button on the

toolbar). In the flowchart editor, on the left part of the editor, a simplest flowchart will appear.
7. Click on the Action block on the left part of the editor. On the right part of the editor there will be the

content of the selected Action block.

5

Figure 2.3 – Creation of a new simplest block diagram

8. Select Functions tab on the panel on the middle part of the editor.
9. In the displayed window with functions, click on the ADD button in the Math operations group. Then

move the cursor to the right part of the editor and click in any place of this field. The Addition function

will appear in the editor.
10. Click on the Variable button, move the cursor to the right part of the editor and click in any place of this

field.

11. Click on the Constant button, move the cursors to the right part of the editor and click in any place of
this field.

12. Change the value of the constant to 1. To do this, double-click the constant and in the opened dialog

box, in the Value field, enter the number 1.
13. Place the added elements (Figure 2.4) and connect them. For connection of two pins, you should click

with the left mouse button on the first pin, then click on the second pin.

Figure 2.4 – Scheme of incrementing the variable var_1 by 1

6

14. Choose menu item Build – To build (or click the button on the tollbar). If everything is done correctly,

program will build without errors.

15. Choose menu item Debug – Start debugging (or click the button on the tollbar). If the device is
connected, a window prompts upload configuration to the device will appear, click Yes button. Wait a

few second until the device reboots, then the application will automatically load the program and enter
debug mode.

16. Click on the Step button several times (menu item Debug - Step) and make sure that the value of

the variable is increased by 1. The current value of the variable is displayed above its output.

17. Click on the Run button (menu item Debug - Run) and make sure that the value of the variable is
increased.

18. Click on the End debug button (menu item Debug – End debug).

Figure 2.5 – Program debug

7

3. PROGRAM INTERFACE APPEARANCE

The application is divided into the following areas: main menu, toolbar, status bar, main area.
The main menu contains options for interaction with the application.
The toolbar duplicates the most frequently used menu items, can be hidden (menu item View – Toolbar).
The status bar displays information about connected device and necessary recourses for the project

performance.
The main area of the application contains:

 Project flowchart editor.
 Function blocks (functions) diagram editor for a particular block of the flowchart.

 Section with elements for creating a project diagram (between editors).
 Additional tabs – issues, build output, break points (displaying is controlled with the View menu).

Figure 3.1 – Redactor appearance

8

4. CREATING AND EDITING THE PROGRAM

4.1 General information

Program flowchart, loaded to device, is drawn up using graphic elements.

First, a flowchart is drawn up in the editor on the left side of the application. Flowchart is a general algorithm
of the program, which consists of blocks (steps) interconnected by lines indicating the direction of the execution
sequence. The following blocks are supported:

 Start – beginning of the program, is always one-off present in the flowchart.
 End – ending of the program, is always one-off present in the flowchart.

 Action – data processing block.
 Condition – data processing block with condition, allows continuing the program in one of two ways. This

block allows changing the sequence of program execution for programming conditions and loops.

Figure 4.1 – Appearance of Start, Action, Condition and End blocks

Beginning with Start block, the blocks are executed one after another in a user-defined sequence (with the

help of lines). The program reaches the block End - means the end of processing this loop. Loops run endlessly
one after the other, from the Start block to the End block.

On the right side of the application, a data block diagram is drawn up for the particular block (Action or
Condition) from the left part. This diagram consists of interconnected function blocks (functions), constants and
variables.

Figure 4.2 – Appearance of Constant, Function and Variable elements

The function block diagram is inherently similar to the CFC (Continuous Function Chart) programming

language, which is used for programming PLCs (Programmable Logic Controllers).

4.2 Description of elements in the Flowchart

4.2.1 Start and End blocks

These blocks indicate the beginning and ending of the program. They are one-off present on the diagram

and cannot be deleted.

9

4.2.2 Action block

This block is used to describe one or more functions. The block has one input and one output, which allow
placing it in the flowchart and show the direction of the program run.

After execution of the last function of the Action block, the program proceeds to the execution of the block

which is connected to the output.

Figure 4.3 – Example of including Action block into flowchart

4.2.3 Condition block

This block is used to describe decision points in the program depending on the conditions specified by the
user. As in the Action block, within the Condition block, one or more functions are described. The block has one
input and two outputs: «Output +» and «Output -», which allow placing it on the flowchart and show the

direction of the program run.

Figure 4.4 – Example of including Condition block into flowchart

A distinctive feature of the block is the presence of the result system variable, which is located inside the
block (on the right side of the editor). The variable result cannot be deleted or copied.

For the block execution, the result variable must contain True or False condition.

Figure 4.5 – Example of connecting the result variable inside the Condition block

After execution of the last function of the Condition block, the program checks the value of the result variable,
and if the value is True, then the program proceeds to the execution of the block connected to the «Output +»,

if the value is False, the program proceeds to the execution of the block connected to the «Output -».

10

Figure 4.6 – Decision point and program execution depending on the value of the result variable

4.3 Creating a Flowchart

As mentioned above, the Start and End blocks are one-off present in the program, they cannot be deleted
and copied. Only their position can be changed on the flowchart.

The Action and Condition blocks can be added to the flowchart in required numbers. For that go to the Blocks
tab on the panel in the middle part of the application and use one of two ways to move blocks to the flowchart:

 Selection by the first click, placement by the second click.

Left-click on the required block in the Main blocks group, then move the cursor to the flowchart editor
(in the left part) and left-click again, the selected block will be added to the flowchart.

 Drag’n’drop.

Point to the required block in the Main blocks group, then “grab” it (hold down the left mouse button)
and move the cursor to the flowchart editor (in the left part). “Release” the block (release the left
mouse button), the selected block will be added to the flowchart.

To cancel adding a block, press the Esc key, or click the Arrow button. Blocks can be assigned a name and
description, for this it is needed to double-click on the block or right-click and select the Properties menu item
(duplicates the main menu item Edit - Properties). Enter the appropriate parameters in the appeared dialog

box. Block description is displayed when it is hover the cursor over it.

Figure 4.7 – Elements for creating a flowchart

The order of blocks execution is determined by the user with the help of connecting lines. Connected pins
form a chain. To connect two pins, it is needed to click on the first pin, a line will appear, then click on the

second pin. The direction of the lines can be changed by clicking in the right places during the creation process
(after clicking on the first pin). A pin can be connected to an existing chain by clicking on the pin first, then on
the chain. To cancel creating a chain, press the Esc key. A chain can contain multiple outputs and one input.

The case where the chain contains more than one input will result in a compilation error. Block inputs are
indicated by an arrow. All pins of blocks in the flowchart must be connected.

Each block added by the user contains its own function block diagram (on the left side of the application).

11

4.4 Description of Functional Blocks Scheme Elements

4.4.1 Constants and variables

In order for the user to set the required initial state of the program, as well as to receive and process the
results of the program, the elements Constant and Variable are used.

Constant is a constant value which is determined at the stage of drawing up the program and is not changed
during the execution of the program.

Variable is a named memory area which is used to write, read, and store various values. The value of a

variable is determined when the program is compiled and can subsequently change constantly during the
execution of the program.

Characteristics of constants and variables:

Name Applicability Description

Name Variable
A text name that allows you to refer to the value of each specific
variable (read it or change it).
The maximum name length is 16 characters.

Type
Variable
Constant

The range of valid values and the size allocated in memory for a
constant or variable depend on the type.
“Int32”

Integer number from −2147483648 to 2147483647.
Occupies 4 bytes in the memory.

“Float”
Floating-point number.

Range of values without loss of precision for numbers with no more
than 7 significant digits. For example, -9999999 to 9999999 or -
0.999999 to 0.999999.
Occupies 4 bytes in the memory.

 “Bool”
Boolean (logical) type that has two values True or False.
Occupies less than 1 byte in memory.

Type conversion in the Complex Events:

“INT32 to FLOAT” and back “FLOAT to INT32”:

Only the integer part and the sign are transferred:
int32 “-123” is converted to float “-123.0”;
float “5.99” is converted to int32 “5”.

“FLOAT/INT32 to BOOL”:
True – values not equal to “0” (or “0.0”);
False – values equal to “0” (or “0.0”).

«BOOL to FLOAT/INT32»:
True is converted to “1” (or “1.0”);
False is converted to “0” (or “0.0”).

Value
(displaying)

Variable
Constant

Type of displaying the number value with the INT32 type during
debugging (during calculations the displaying does not anyhow affect
the result).
“DEC” - Number “26952” in the decimal system

‘26952’
“HEX”- Number “26952” in the hexadecimal system

‘0х6948’
“BIN” - Number “26952” in the binary system

‘0b0110100101001000’
“ASCII” - Number “26952” as ASCII text

‘Hi’

Value
Variable
Constant

A value that the constant or variable will take when the program starts.

12

Write access
(during debugging)

Variable
If the flag is set, then while the debugger is running, the user can
change the value of the variable manually without stopping the
program.

4.4.2 Function blocks

Function block (function) is a block that has a certain number of inputs and outputs. The inputs of the function
receive data (for example, from other blocks), then this data is processed and generated into those, which is
sent to the outputs of this function (these outputs can be connected to the inputs of other function blocks). The

functions are executed one after the other. The order is determined by the sequence number.

Figure 4.8 – Sequence number for function execution

4.5 Creating a Function block diagram

In selecting a block in the flowchart (on the left side), its function diagram appears on the right side of the

application. A function diagram can contain function blocks (functions), variables and constants interconnected.
Lines in the function block diagram indicate the direction of data flow.

To add a function to the diagram, go to the Functions tab on the panel in the middle part of the application

and use one of two ways to move blocks to the flowchart:

 Selection by the first click, placement by the second click.
Left-click on the required function, then move the cursor to the function block diagram editor (in the

right part) and left-click again, the selected function will be added to the diagram.
 Drag’n’drop.

Point to the required function, then “grab” it (hold down the left mouse button) and move the cursor
to the function block diagram editor (in the right part). “Release” the block (release the left mouse
button), the selected function will be added to the flowchart.

13

To cancel adding a function, press the Esc key, or press the Arrow button. Constants and variables are
added in the same way as functions, for this there are Constant and Variable buttons. When using the

Variable button, a new variable will always be added to the diagram. To add a previously created variable to
the diagram, go to the Variables tab and select the one you need from the list. This tab displays all user-added
variables. The same variable can be added to different function block diagrams.

Figure 4.9 – Elements for creating a function block diagram

To quickly find variable on the diagram, you need to click the Search button for the required variable. You
can read more about the search interface in the “Variables search” section.

Function inputs are always located on the left part and outputs are always located on the right part. Connection

of the elements pins of the functional diagram is carried out as in the flowchart. Connected pins form a chain.
There can be only one function output in a chain, only one variable or constant. If there is an output in the
chain, then the constant should not be connected to this chain. It is not necessary to connect all function pins

to the chain.
The functions are executed sequentially one after the other. In the upper right corner, the sequence number

of the function is displayed, which determines the order of execution. The lower the sequence number, the

sooner the function is executed. To change the sequence number is possible by double-clicking on the function
or by right-clicking and selecting the Properties menu item. Then in the appeared dialog box, change the value
of the Execution index. In this dialog box, it is possible to change other parameters of the functions, if they are

provided for it.
The editor provides mechanism for automatic numbering of functions, detailed description is given in the

section “Automatic numbering of function blocks”.

14

4.6 Flowchart description elements

To improve the information content of the flowchart, the editor provides the following mechanisms:

 Adding/changing the Name and Description of the block on the left side of the flowchart;
 Adding Text and Rectangle elements to the left or right side of the flowchart;

Figure 4.10 - Undo and redo control buttons

4.6.1 Name and Description of the block

Each block on the left side of the flowchart has a Name and Description. The Name is displayed on the
flowchart inside the block and in the title of the tooltip that appears when you point to the block. The Description

of the block is displayed only in the tooltip. To change the Name or Description, you need to right-click on the
block and select Properties from the context menu.

4.6.2 Text

To place text boxes on the diagram, you can use the Text element. The element can be placed both on the
left and on the right side. To place it, select the menu item Place - Text. The following parameters can be
configured for text boxes:

 Font size
 Style of writing (bold, italic, underlined)

 Vertical alignment (left, center, right)

The text color is determined by the global color scheme setting (see the “Color scheme” section).

4.6.3 Rectangle

To place frames on the diagram, you can use the Rectangle element. The element can be placed both on the
left and on the right side. To place it, select the menu item Place - Rectangle. For frames, only the line type

can be configured.

The frames color and their thickness are determined by the global color scheme setting (see the “Color

scheme” section).

15

4.7 Undo/Redo

Undo and redo operations are available in the editor.

Figure 4.11 - Undo and redo buttons

The memory stores the last 100 user actions. The program controls all basic user manipulations: creating

deleting/moving of block, lines, variables and constants, changing the names of variables, changing the values
of variables and constants, changing the properties of blocks and functions, etc. This makes working in the
editor much easier.

4.8 Automatic numbering of function blocks

The editor provides mechanism for automatic numbering of function blocks (menu item Edit - Number
function blocks). This function allows you to quickly number blocks depending on their location on the
diagram.

Two numbering algorithms are available:
Down then right - column numbering from top to bottom, from left to right.

Right then down – line numbering from left to right, from top to bottom.

The numbering mechanism focuses only on the visual arrangement of the circuit elements and does not

adjust its work depending on the order of connecting the elements or their functionality.

The automatic numbering mechanism is designed for fast draft numbering. After it, it is
recommended to check the result and make manual adjustments.

4.9 Variables search

For the convenience of working with variables, you can use the search box, it can be open by two ways:

 In the menu View – Variables search

 In the list of used variables on the Variables tab, click the Search button

The area with the list of variable usage points will open. When you double-click on any of the mentions, the

editor centers the viewport at the required location in the diagram. If you open the search with the Search
button, then when you open it, the name of the selected variable will be indicated in the search box.

16

4.10 Operation with files

At Complex Events startup, an empty project is created; only the Start and End blocks are present on the

block diagram. The menu item File – New (the button on the toolbar), creates a new project with a simple
block diagram.

The created project can be saved to a file (the menu items File – Save, File – Save as or the button

on the toolbar), open from a file (the menu item File – Open or the button on the toolbar). For quick access
to recent projects, there is a list of recently saved and opened files, using the menu item File – Recent files.

Block diagrams can be saved and opened to/from a file. For that select the required block on the block

diagram and use the menu items Edit – Import, Edit – Export (or right-click and select similar menu items

from the list). For quick access, blocks can be saved to templates (the menu item Edit – Send to templates).
Saved templates are available in the Templates group on the Blocks tab in the panel in the middle part of the
application.

17

5. PROGRAM BUILD

Building the program is activated through the menu item Build – To build (or clicking the button on the

toolbar). Building includes:
 compilation of the project (can be compiled on its own, the menu item Build- Compile)
 building the output program file for uploading into the device

 checking device configuration
 displaying errors and warnings

 displaying resources needed to build the program.

During compilation, the program is built and the necessary resources are allocated. If the program contains
errors or the device lacks the necessary resources for building, then the corresponding messages are added to
the Issues tab (automatically opens).

In building the output file, a file uploaded to the device is generated, it contains a program executed by the
Complex Events interpreter and the source file of the project. If the size of the file exceeds the allowable size,
the corresponding messages are added to the Issues tab.

In order for program to work properly, Complex Events support must be enabled in the device configuration,

and if the program uses functions that work with the device's peripherals, then this peripheral must be
configured accordingly. If the configuration contains incorrect settings, the corresponding messages are added
to the Issues tab

The Issues tab displays error and warning messages. The tab is accessed through the View - Issues menu

item. At left double-clicking on the message, the application shows the problematic element: shows in the

graphical editor, displays the required device configuration tab, etc.

The Build output tab displays the resources consumed by the program. The tab is accessed through the View

– Build output menu item. Program resources:
 Program code – 2048 bytes

 Variables
bool - 256 pcs
int / float - 512 bytes (4 bytes for each)

 Total size of the file uploaded to the device is 16384 bytes.

Information about the resources used is located on the right side of the status bar:

Figure 5.1– Program resources

18

6. PROGRAM DEBUG

All debug options are available when device is connected.

6.1 Start debugging

To debug the program on the device, select the Debug – Start debugging or click the button on the
toolbar. After that, the application will perform the following actions:

 Builds the project. If the build results error messages, debugging will be interrupted.
 If the build results messages about incorrect configuration of the device, it will be prompted to interrupt

debugging (if other is not selected in the settings).
 Proposes to upload the configuration to the device (if other is not selected in the settings). If accepted,

configuration will be uploaded, after that device will be rebooted.
 Uploads the program to the device.

 Enters debug mode, stopping at the first executable function.

6.2 Debugging for a running program

To debug the already working device, select the Debug – Connect to the running device or click the
button on the toolbar. After that, the application will perform the following actions:

 Proposes to download the configuration from the device (if other is not selected in the settings).
 Downloads the program from the device and opens it in the editor.

 Starts building the program, if there are error messages, the connection will be interrupted.
 Enters debug mode, while the program will continue to run.

6.3 Operation in debug mode

In debug mode, the application prohibits changing the current diagram. The panel with diagram elements in

the middle part is replaced by a debug panel.
The debug panel displays: the program status bar, buttons to manage the program, a list of variables,

information about the execution time of the program loop.

Figure 6.1 – Appearance of the editor in debug mode

19

6.3.1 Program status bar

The program can be in the following states:
 No program – no program has been loaded into the device, or has been loaded with an error.

 Error – an error occurred during the execution of the program.
 Stopped – the execution of the program is stopped. At the next start of the program, the variables will

be initialized and launched from the first function.
 Download – recording program to the device.
 Paused – the application has been paused. At resuming operation, the program will continue execution

with the current function. In this mode, the current function and its block are highlighted in the editor
windows.

 Execution – the device is executing the program.

After exiting the debug mode, the device will start or continue the program (depending on the current state),

but only if the program was not in the modes: No program or Error.

6.3.2 Controlling program execution

To control the program execution, there are special buttons under the program status bar (these buttons are

duplicated in the Debug menu):

 Continue – if the program is in the Stopped state - starts the program for execution, if the program
is in the Paused state - continues working with the current function.

 Stop – stops the program execution (puts it in the Stopped state).

 Pause – pauses the program execution (puts it in the Paused state).
 Step – performs one function and pauses at the next one.

 Cycle – executes all functions until it goes to the beginning of the program, pauses at the first
function.

 Send user command – opens a dialog for sending data to a user command. This command is
displayed in the middle panel only if the program uses the CMD function.

 End debug – ends debugging the program, takes the device out of debug mode, and switches the

editor to normal mode.

To stop the program before executing a specific function, the application provides breakpoints. To set and
remove a breakpoint, it is needed to right-click on the required function and select the Toggle breakpoint

menu item (duplicated in the Debug menu). Setting breakpoints is also available in the project diagram editing
mode. The device physically supports up to 8 breakpoints. The list of current breakpoints can be viewed on the
Breakpoints tab (opened with the View - Breakpoints menu item). Through this tab, breakpoints can be

deleted by selecting the required ones and pressing the Del key. At double-clicking on a breakpoint in the list,
the application will show the function on which it is set.

6.3.3 Viewing diagram data values

In debug mode, the application in the diagram displays the current values at the inputs and outputs of the
functions (directly above each pin). Data is read from the device with a period specified in the application

settings.
Under the buttons in the middle part of the program there is a list of used variables with their current values.

This list can be filtered by variable name or data type.

6.3.4 Execution time of the program loop

The program runs cyclically. The time of one loop may vary, depending on the state of the program data or
on the degree of device workload. To estimate the execution time of the program, the device measures the loop

period. The panel in the middle part of the program, under the list of variables, displays the minimum, maximum
and average loop value in milliseconds.

20

6.4 Writing and reading a program without debugging

The editor allows writing the program to the device without entering debug mode. To do this, there is a menu

item Debug – Write program to device (or the button on the toolbar). By analogy, it is allowed reading
the program from the device and opening it in the editor with Debug – Read program from device menu
item (or the button on the toolbar).

It is important to remember that with this method of loading the program, the editor does not check the

compatibility of the device configuration with the loaded program.

21

7. SETTINGS

Settings are opened through the menu item File – Settings. The settings are divided into the following
groups: Main, Debug, Color scheme.

7.1 Main

In this window, it is possible to configure the interval for automatic saving of project changes – the Auto save
field. The following values are available:

 10 seconds
 30 seconds
 1 minute

 5 minutes
 10 minutes
 No (Autosave disabled)

7.2 Debug settings

In this window, following parameters are configured:
 Data update period is the time period in milliseconds, with which debug information is read if the device

is connected via USB.

The minimum value is 100 ms.
 Data update period for low-speed connection is the time period in milliseconds with which debug

information is read if the device is connected via Bluetooth or RCS server.
The minimum value is 1000 ms.

 Run debugger with incorrect device configuration – possible values: Ask (by default), No, Yes
 Upload configuration before starting debugger – possible values: Ask (by default), No, Yes
 Download configuration before connection to device – possible values: Ask (by default, No, Yes

7.3 Color scheme

In this window, it is possible to customize the color scheme of the graphical elements of the editor.
The field Default color scheme allows selection one of the standard color schemes. To apply the selected

color scheme it is necessary to select it in the dropdown list and click on the Apply button.
For manual editing of the editor color schemes it is possible to use group of settings described below.
Options in the Block diagram group refer to the interface located on the left side of the editor. Options in the

Function diagram group refer to the interface located on the right side of the editor. Options in the General
group refer to general graphic items.

 Field For state defines the state in which the graphic elements are located. There are four possible states,

the first two are general, other two are related to debug mode:
 Normal – normal state when no item is selected.
 Selected – when user selected a given item, one or more.

 Current – in debug mode, the program is paused on this element.
 Current selected – in addition to the previous state, the item is selected.

22

8. APPENDIX

8.1 Shortcut keys

Working with project:

CTRL + N Create a new project

CTRL + O Open project from file

CTRL + S Save project to file

Build:

CTRL + B Build a project

CTRL + SHIFT + B Compile the project

Debug:

F5 Start debugging, continue execution

F2 Finish debugging

F10 Perform one loop

F11 Perform one function

F9 Toggle breakpoint

8.2 Event codes Complex Events

With function running, device can generate events with following codes (event_code):

Code

(HEX)
Code (DEC) Text for SMS Description

0xA056 41046 CMPLXEVNT_A Complex Events. Custom event #1

0xA057 41047 CMPLXEVNT_S Complex Events. Custom event #2

0xA058 41048 CMPLXEVNT_F Complex Events. Custom event #3

0хA22F 41519 C_CVNT_U Complex Events. Program update.

23

8.3 Function block library

List of function blocks:

Name # Description
Number of operands Size,

bytes
Operands

type IN OUT INT CONST

Main operations
NOP 3 No operation (delay) - - - - 1 -

DELAY 78 Delay 1 - - - 3 int32

MOVE 4 Move assignment 1 1 - - 5 Any

MOVE_EN 5
Move conditional
assignment

2 1 - - 7 Any

TO_FLOAT 6 Convert to float 1 1 - - 5 int32
FROM_FLOAT 75 Convert from float 1 1 - - 5 float
Math operations

ADD 7 Addition 2 1 - - 7 float|int32

SUB 8 Subtraction 2 1 - - 7 float|int32

MUL 9 Multiplication 2 1 - - 7 float|int32

DIV 10 Division 2 1 - - 7 float|int32

EXP 11 Exponentiation 2 1 - - 7 float|int32

MOD 12 Modulo division 1 1 - - 5 float|int32

ABS 13 Absolute value 1 1 - - 5 float|int32

SIGN 14 Definition of sign 1 1 - - 5 float|int32

SQRT 15 Square root 1 1 - - 5 float

LN 16 Natural logarithm 1 1 - - 5 float

LOG 17 Common logarithm 1 1 - - 5 float

SIN 18 Sine 1 1 - - 5 float

COS 19 Cosine 1 1 - - 5 float

TAN 20 Tangent 1 1 - - 5 float

ASIN 21 Arcsine 1 1 - - 5 float

ACOS 22 Arccosine 1 1 - - 5 float

ATAN 23 Arctangent 1 1 - - 5 float

Logical operations
AND 24 Logical AND 2 1 - - 7 bool

OR 25 Logical OR 2 1 - - 7 bool

XOR 26 Logical exclusive OR 2 1 - - 7 bool

NOT 27 Logical NOT 1 1 - - 5 bool

Bitwise operations
BAND 28 Bitwise AND 2 1 - - 7 int32

BOR 29 Bitwise OR 2 1 - - 7 int32

BXOR 30 Bitwise exclusive OR 2 1 - - 7 int32

BNOT 31 Bitwise NOT 1 1 - - 5 int32

BSHL 32 Bitwise left shift 2 1 - - 7 int32

BSHR 33 Bitwise right shift 2 1 - - 7 int32

CODER 34 Coder N 1 - - 4+2*(N+1) int32

DECODER 35 Decoder 1 N - - 4+2*(N+1) int32

Relational operations
EQ 36 Equal 2 1 - - 7 float|int32

NE 37 Not equal 2 1 - - 7 float|int32

GT 38 Greater 2 1 - - 7 float|int32

GE 39 Greater or equal 2 1 - - 7 float|int32

Selection and limit operations
SEL 40 Selection value 3 1 - - 9 float|int32

MAX 41 Maximum value 2 1 - - 7 float|int32

MIN 42 Minimum value 2 1 - - 7 float|int32

LIMIT 43 Limitation 3 1 - - 7 float|int32

MUX 44 Multiplexer 1+N 1 - - 4+2*(N+2) float|int32

DMUX 45 Demultiplexer 2 N 4+2*(N+2) float|int32

APPERTURE 94 Value change control 2 1 1 - 9 float|int32

Triggers, generators and counters
SR 46 Set-Reset trigger 2 1 - - 7 bool

24

RS 47 Reset-Set trigger 2 1 - - 7 bool

TT 48 Toggle (T-trigger) 1 1 1 - 7 bool

TP 49 One pulse generator 2 2 2 - 11 bool

BLINK 50 Pulse generator 3 3 1 - 15 bool

TON 51 On delay timer 2 2 2 - 13 bool

TOFF 52 Off delay timer 2 2 2 - 13 bool

RISING 53 Rising edge detector 1 1 1 - 7 bool

FALLING 54 Falling edge detector 1 1 1 - 7 bool

CNT 55 Counter 5 3 2 - 21 bool

RAND 56 Random number generator - 1 - - 3 int32

PWM 57 PWM generator 2 2 1 - 11 int32

Special functions

EVENT 58 Event generator 2 - 1 2 9 int32

CMD 59 Command from device - 6 - - 13 int32

FLEX 60
Reading a value from FLEX
table

- 1 - 3 6 int32

USER_PARAM 61
Writing a value to user
parameter

2 - - 1 6 int32

SMS 62 Send SMS 1 1 1 3+N 10+N bool

USER_SMS 79 Send user SMS 1+N 1 1 M+L
7+2·N
+M+N

bool

RECV_SMS 80 SMS received 0 1 0 1+N+M 4+N+M bool

CALL 63 Make a call 1 1 1 2 9 bool

CAM 64 Take a picture 1 1 1 - 7 bool

GEOZONE 65 Geofence 5 1 1 1 16 float|int32

CALENDAR 76 Calendar 2 7 - - 19 int32

INFO 95 About device - 2 - - 5 int32

IMEI 96 Modem IMEI - 2 - - 5 int32

ICCID 97 SIM card ICCID 1 2 - - 7 int32

IMSI 98 SIM card IMSI 1 2 - - 7 int32

LOG_MSG 106 Send a message to the log 1+N 0 1 M 5+2·N+M bool

Peripheries
INPUT 66 Input 1 2 - 1 8 int32

OUTPUT 67 Output 1 - 1 1 6 int32

HYGRO 68 Hygrometer - 2 - 1 6 float

ACCEL 69 Accelerometer - 9 - - 19 int32

ECODRIVE 70 EcoDrive - 9 - - 19 int32

ONEWIRE_KEY 71 1-Wire key - 3 - - 7 int32

RFID 72 RFID - 5 - - 11 int32

TACHOGRAPH 73 Tachograph driver - 7 - 1 16 int32

GUARD 74 Security mode 1 2 1 1 9 float|int32

CRASH_FILE 77 Accident file generating 2 3 2 - 15 bool

PWRSAVE 81 Energy saving control 6 - - - 13 bool

Access Functions to Digital Ports

RXD_GET 82
Read value from RXD
buffer

2 1 - 1 8 float|int32

RXD_CMP 83 Data search in RXD buffer 1 1 - 1+N 6+N int32

RXD_STR2INT 84
Convert string from RXD
buffer to integer number

1 1 - - 5 int32

RXD_STR2FLOAT 85
Convert string from RXD
buffer to float

1 1 - - 5 float

RXD_CHECKSUM 86
Verify checksum in RXD
buffer

3 1 - 2 11 bool

TXD_INIT 87 TXD buffer initialization 1 - - 1+N 4+N bool

TXD_SET 88 Write value to TXD buffer 4 - - 1 10 float|int32

TXD_CHECKSUM 89
Write checksum to TXD
buffer

4 - - 2 11 bool

TXD_GET 90
Read value from TXD
buffer

2 1 - 1 8 float|int32

RS_TRANS 91
Request/response via
serial port

3 3 - 2 15 bool

25

RS_SEND 92
Transmit data to serial

port
2 1 - 1 8 bool

RS_RECV 93
Receive data from serial
port

2 3 - 2 14 bool

RXD_GET 107
Read value from RXD
buffer

2 N - 1 7+2·N float|int32

TXD_SET 108 Write value to TXD buffer 3+N - - 1 9+2·N float|int32

MODBUS_READ 109
Reading data via Modbus
RTU protocol

1 2+N 1 7
9+2·N +

10
float|int32

|bool

MODBUS_WRITE 110
Writing data via Modbus
RTU protocol

1+N 2 1 7
9+2 N +

10
float|int32

|bool

26

8.3.1 Main operations

8.3.1.1 NOP – no operation

The instruction does nothing and has no inputs or outputs.

8.3.1.2 DELAY – delay

 Signature Type Description

Inputs period int32 The duration of the delay in ms.

The block delays the operation of Complex Events for the time specified by the period input.
Therefore, when the program is running and debugging, it is not possible to see the current
remaining delay time. But if pause the execution at the time of the delay execution, the debugger
will highlight the required DELAY block on the diagram.

8.3.1.3 MOVE - assigment

 Signature Type Description

Inputs x
float, int32,
bool

Input operand.
The value at the input x is copied to the value at the output y

Outputs y
float, int32,
bool

Output operand

The block type is determined by the type of the value at the input x

8.3.1.4 MOVE_EN – condition assigment

 Signature Type Description

Inputs

x
float, int32,
bool

Input operand

enable bool
Copy condition.
The value at input x is copied to the value at output y if enable =
true, otherwise y is not changed.

Outputs y
float, int32,
bool

Output operand

The block type is determined by the type of the value at the input x

27

8.3.1.5 (deprecated) TO_FLOAT – convert int32(IEEE754) to float

Function is hidden, starting for the editor version v.3.3.0.

 Signature Type Description

Inputs x int32 Input operand

Outputs y float Output operand

The block interprets the integer value received at the input x as a number with floating point written in

accordance with the IEEE754 standard and translates it into a more readable and computable representation.

INT32

FLOAT

1095977927 = 13.206

8.3.1.6 (deprecated) FROM_FLOAT – convert float to int32(IEEE754)

Function is hidden, starting for the editor version v.3.3.0.

 Signature Type Description

Inputs x float Input operand

Outputs y int32 Output operand

The block converts a number with floating point received at the input x to the integer record format according

to the IEEE754 standard.
FLOAT

INT32

13.206 = 1095977927

28

8.3.2 Math operations

8.3.2.1 ADD – addition

 Signature Type Description

Inputs
a float, int32 Summand 1

b float, int32 Summand 2

Outputs y float, int32 Sum

y = a + b

The block type is determined by the type of the value at the input a

8.3.2.2 SUB – subtraction

 Signature Type Description

Inputs
a float, int32 Minuend

b float, int32 Subtrahend

Outputs y float, int32 Difference

y = a - b

The block type is determined by the type of the value at the input b

8.3.2.3 MUL – multiplication

 Signature Type Description

Inputs
a float, int32 Multiplier 1

b float, int32 Multiplicand 2

Outputs y float, int32 Product

y = a ∙ b

The block type is determined by the type of the value at the input a

29

8.3.2.4 DIV – division

 Signature Type Description

Inputs
a float, int32 Dividend

b float, int32 Divisor

Outputs y float, int32 Fraction

𝑦 =
𝑎

𝑏

The block type is determined by the type of the value at the input a

8.3.2.5 EXP – exponentiation

 Signature Type Description

Inputs
a float, int32 Base

b float, int32 Exponent

Outputs y float, int32 Power

𝑦 = 𝑎𝑏

The block type is determined by the type of the value at the input a

8.3.2.6 MOD – modulo division

 Signature Type Description

Inputs
a float, int32 Dividend

b float, int32 Divisor

Outputs y float, int32 Remainder

𝑦 = 𝑎 % 𝑏

The block type is determined by the type of the value at the input a

8.3.2.7 ABS – absolute value

 Signature Type Description

Inputs x float, int32 Input operand

Outputs y float, int32 Result

𝑦 = |𝑥|

The block type is determined by the type of the value at the input x

The block type is determined by the type of the value at the input x

30

8.3.2.8 SIGN – definition of sign

 Signature Type Description

Inputs x float, int32 Input operand

Outputs y float, int32 Result

𝑦 = {
𝑥 > 0, 1
𝑥 = 0, 0

𝑥 < 0, −1

The block type is determined by the type of the value at the input x

8.3.2.9 SQRT – square root

 Signature Type Description

Inputs x float Input operand

Outputs y float Result

𝑦 = √𝑥

8.3.2.10 LN – natural logarithm

 Signature Type Description

Inputs x float Input operand

Outputs y float Result

𝑦 = ln 𝑥

8.3.2.11 LOG – common logarithm

 Signature Type Description

Inputs x float Input operand

Outputs y float Result

𝑦 = log 𝑥

8.3.2.12 SIN – sine

 Signature Type Description

Inputs x float Input operand

Outputs y float Result

𝑦 = sin (𝑥)

8.3.2.13 COS – cosine

 Signature Type Description

Inputs x float Input operand

Outputs y float Result

𝑦 = cos (𝑥)

8.3.2.14 TAN – tangent

 Signature Type Description

Inputs x float Input operand

Outputs y float Result

𝑦 = tg (𝑥)

31

8.3.2.15 ASIN – arcsine

 Signature Type Description

Inputs x float Input operand

Outputs y float Result

𝑦 = 𝑎sin (𝑥)

8.3.2.16 ACOS – arccosine

 Signature Type Description

Inputs x float Input operand

Outputs y float Result

𝑦 = acos (𝑥)

8.3.2.17 ATAN – arctanangent

 Signature Type Description

Inputs x float Input operand

Outputs y float Result

𝑦 = atg (𝑥)

32

8.3.3 Logical operations

8.3.3.1 AND – locigal AND

 Signature Type Description

Inputs
a bool Operand 1

b bool Operand 2

Outputs y bool Conjunction

𝑦 = 𝑎 ⋀ 𝑏

a b y

0 0 0

0 1 0

1 0 0

1 1 1

8.3.3.2 OR – logical OR

 Signature Type Description

Inputs
a bool Operand 1

b bool Operand 2

Outputs y bool Disjunction

𝑦 = 𝑎 ⋁ 𝑏

a b y

0 0 0

0 1 1

1 0 1

1 1 1

8.3.3.3 XOR – logical exclusive OR

 Signature Type Description

Inputs
a bool Operand 1

b bool Operand 2

Outputs y bool Exclusive disjunction

𝑦 = 𝑎 ⨁ 𝑏

a b y

0 0 0

0 1 1

1 0 1

1 1 0

8.3.3.4 NOT – logical NOT

 Signature Type Description

Inputs X bool Input operand

Outputs Y bool Negation

𝑦 = 𝑥

x y

0 1

1 0

33

8.3.4 Bitwise operations

8.3.4.1 BAND – bitwise AND

 Signature Type Description

Inputs
a int32 Operand 1

b int32 Operand 2

Outputs y int32 Bitwise conjunction

𝑦 = 𝑎 ⋀ 𝑏

Operand
Value
(DEC)

Value
(HEX)

Value (BIN)

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

a 150 0x96 1 0 0 1 0 1 1 0

b 85 0x55 0 1 0 1 0 1 0 1

y 20 0x14 0 0 0 1 0 1 0 0

8.3.4.2 BOR – bitwise OR

 Signature Type Description

Inputs
a int32 Operand 1

b int32 Operand 2

Outputs y int32 Bitwise disjunction

𝑦 = 𝑎 ⋁ 𝑏

Operand
Value
(DEC)

Value
(HEX)

Value (BIN)

Bit7 Bit6 Bit5 Bit4 Bit7 Bit2 Bit1 Bit0

a 150 0x96 1 0 0 1 0 1 1 0

b 85 0x55 0 1 0 1 0 1 0 1

y 215 0xD7 1 1 0 1 0 1 1 1

8.3.4.3 BXOR – bitwise exclusive OR

 Signature Type Description

Inputs
a int32 Operand 1

b int32 Operand 2

Outputs y int32 Bitwise exclusive disjunction

𝑦 = 𝑎 ⨁ 𝑏

Operand
Value
(DEC)

Value
(HEX)

Value (BIN)

Bit7 Bit6 Bit5 Bit4 Bit7 Bit2 Bit1 Bit0

a 150 0x96 1 0 0 1 0 1 1 0

b 85 0x55 0 1 0 1 0 1 0 1

y 193 0xC3 1 1 0 0 0 0 1 1

8.3.4.4 BNOT – bitwise NOT

 Signature Type Description

Inputs x int32 Input operand

Outputs y int32 Bitwise negation

𝑦 = 𝑥

Operand
Value
(DEC)

Value
(HEX)

Value (BIN)

Bit7 Bit6 Bit5 Bit4 Bit7 Bit2 Bit1 Bit0

x 150 0x96 1 0 0 1 0 1 1 0

y 105 0x69 0 1 1 0 1 0 0 1

34

8.3.4.5 BSHL – bitwise left shift

 Signature Type Description

Inputs
x int32 Shifted

n int32 Shift amount (shifted-in bits)

Outputs y int32 Shift result

𝑦 = 𝑥 ≪ 𝑛

0

1 0 0 1 0 1 1 0

0 1 0 1 1 0 0 0

X = 150 (dec) = 0x96 (hex)

Y = 600 (dec) = 0x258 (hex)

Y = X << 2

0 010 0

00 000 0

8.3.4.6 BSHR – bitwise right shift

 Signature Type Description

Inputs
x int32 Shifted

n int32 Shift amount (shifted-in bits)

Outputs y int32 Shift result

𝑦 = 𝑥 ≫ 𝑛

00 1 0 0 1 0 1 1 0

0 0 1 0 0 1 0 1 01

X = 150 (dec) = 0x96 (hex)

Y = 37 (dec) = 0x25 (hex)

Y = X >> 2

000 0

00 000 0

35

8.3.4.7 CODER – coder

 Signature Type Description

Inputs

x0 bool Bit 0

x1 bool Bit 1

…

xN-1 bool Bit N-1

Outputs y int32 Bitwise sum

𝑦 = ∑ 𝑥𝑖 ≪ 𝑖

𝑁−1

𝑖=0

Y = 60b00000110

X0 = 0
X1 = 1
X2 = 1
X3 = 0

 ...

8.3.4.8 DECODER – decoder

 Signature Type Description

Inputs x int32 Input value

Outputs

y0 bool Bit 0

y1 bool Bit 1

…

yN-1 bool Bit N-1

𝑦𝑖 = (𝑥 ⋀(1 ≪ 𝑖)) ≫ 𝑖, 𝑖 ∈ 0. . 𝑁 − 1

X = 6 0b00000110

Y0 = 0
Y1 = 1
Y2 = 1
Y3 = 0
...

36

8.3.5 Relational operations

8.3.5.1 EQ – equal

 Signature Type Description

Inputs
a float, int32 Operand 1

b float, int32 Operand 2

Outputs y bool Result true, if a = b

𝑦 = {
𝑎 = 𝑏, 𝑡𝑟𝑢𝑒

𝑓𝑎𝑙𝑠𝑒

The block type is determined by the type of the value at the input a

8.3.5.2 NE – not equal

 Signature Type Description

Inputs
a float, int32 Operand 1

b float, int32 Operand 2

Outputs y bool Result true, if a ≠ b

𝑦 = {
𝑎 ≠ 𝑏, 𝑡𝑟𝑢𝑒

𝑓𝑎𝑙𝑠𝑒

The block type is determined by the type of the value at the input a

8.3.5.3 GT – greater

 Signature Type Description

Inputs
a float, int32 Operand 1

b float, int32 Operand 2

Outputs y bool Result true, if a > b

𝑦 = {
𝑎 > 𝑏, 𝑡𝑟𝑢𝑒

𝑓𝑎𝑙𝑠𝑒

The block type is determined by the type of the value at the input a

8.3.5.4 GE – greater or equal

 Signature Type Description

Inputs
a float, int32 Operand 1

b float, int32 Operand 2

Outputs y bool Result true, if a ≥ b

𝑦 = {
𝑎 ≥ 𝑏, 𝑡𝑟𝑢𝑒

𝑓𝑎𝑙𝑠𝑒

The block type is determined by the type of the value at the input a

37

8.3.6 Selection and limit operations

8.3.6.1 SEL – selection value

 Signature Type Description

Inputs

a float, int32 Operand 1

b float, int32 Operand 2

n bool

Select operand.
If n equal to «1», then the value of input b will be transmitted to the
output.
Otherwise, the value of input a will be transmitted to the output.

Outputs y float, int32 Result

𝑦 = {
𝑛 = 𝑓𝑎𝑙𝑠𝑒, 𝑎

𝑏

The block type is determined by the type of the value at the input a

8.3.6.2 MAX – maximum value

 Signature Type Description

Inputs
a float, int32 Operand 1

b float, int32 Operand 2

Outputs y float, int32 Maximum value

𝑦 = {𝑎 > 𝑏, 𝑎
𝑏

The block type is determined by the type of the value at the input a

8.3.6.3 MIN – minimum value

 Signature Type Description

Inputs
a float, int32 Operand 1

b float, int32 Operand 2

Outputs y float, int32 Minimum value

𝑦 = {𝑎 < 𝑏, 𝑎
𝑏

The block type is determined by the type of the value at the input a

38

8.3.6.4 LIMIT – limitation

 Signature Type Description

Inputs

x float, int32 Input operand

max float, int32 Maximum

min float, int32 Minimum

Outputs y float, int32
If x is less than min then the output will be set to min.
If x is less than max then the output will be set to max.
Otherwise, the output will be set to x.

𝑦 = {
𝑥 > 𝑚𝑎𝑥, 𝑚𝑎𝑥
𝑥 < 𝑚𝑖𝑛, 𝑚𝑖𝑛

𝑥

The block type is determined by the type of the value at the input x

8.3.6.5 MUX – multiplexer

 Signature Type Description

Inputs

x0 float, int32 Input 0

x1 float, int32 Input 1

…

xN-1 float, int32 Input N-1

k int32
The number of the input, the value of which will be transmitted to the
output.

Outputs y float, int32 The output takes on the value of one of the inputs.

𝑦 = 𝑥𝑘 , 𝑘 ∈ 1 … 𝑁 − 1

The block type is determined by the type of the value at the input x0

8.3.6.6 DMUX – demultiplexer

 Signature Type Description

Inputs
x float, int32 Input. The value that will be transmitted to one of the outputs.

k int32
The number of the output to which the input value will be
transmitted.

Outputs

y0 float, int32 Output 0

y1 float, int32 Output 1

…

yN-1 float, int32 Output N-1

𝑦𝑖 = {𝑥, 𝑖 = 𝑘
0

, 𝑘 ∈ 0 … 𝑁 − 1

The block type is determined by the type of the value at the input x

39

8.3.6.7 APPERTURE – Value change control

 Signature Тype Description

Inputs
x float, int32 Input operand

delta float, int32 Value that changes the output y to true

Outputs y bool Result

Internal x_old float, int32 The value of x, at the previous commit

𝑦 = {
|𝑥 − 𝑥_𝑜𝑙𝑑| ≥ 𝑑𝑒𝑙𝑡𝑎, 𝑡𝑟𝑢𝑒

𝑓𝑎𝑙𝑠𝑒

The block type is determined by the type of the value at the input x

40

8.3.7 Triggers, generators, counters

8.3.7.1 SR – Set-Reset trigger

 Signature Type Description

Inputs
S bool

Set output. When 1 comes to input S, output Q is set to 1. Input S is
«dominant», i.e. if inputs S and R are set to 1, then output Q will be
set to 1.

R bool Reset output. When 1 comes to input R, output Q is set to 0.

Outputs Q bool Output

𝑄 = (𝑅 ⋀ 𝑄) ⋁ 𝑆

R

S

Q

8.3.7.2 RS – Reset-Set trigger

 Signature Type Description

Inputs

S bool Set the output. When 1 comes to input S, output Q is set to 1.

R bool
Reset the output. When 1 comes to input R, output Q is set to 0.
Input R is «dominant», i.e. if inputs S and R are set to 1, then output
Q will be set to 0.

Outputs Q bool Output

𝑄 = 𝑅 ⋀(𝑄 ⋁ 𝑆)

R

S

Q

41

8.3.7.3 TT – Toggle (T-trigger)

 Signature Type Description

Inputs T bool
Input. When transition from 0 to 1 comes to input T, output Q is
negated.

Outputs Q bool Output

Internal old bool T value in the previous step.

Q

T

8.3.7.4 TP – one pulse generator

 Signature Type Description

Inputs
start bool Trigger (rising edge)

period int32 Pulse duration in ms

Outputs
output bool

Output. Set to 1 by the start input. It is reset to 0 when the count
counter reaches the value of the period input.

count int32 Counter value in ms. Triggered by the start input.

Internal
tick int32 Origin of the countercount
old bool start value in the previous step.

When 1 comes to start input, output is set to 1 and internal counter count is started. When counter reaches
the period value, count stops and output is reset to zero.

count

start

output

period

42

8.3.7.5 BLINK – pulse generator

 Signature Type Description

Inputs

enable bool Enable signal

duration hi int32 Duration of states of logical 1 in ms

duration lo int32 Duration of states of logical 0 in ms

Outputs

output bool
Output. It is in the state of logical 1, at counting the counter count
hi, and in the state of logical 0 at counting the counter count lo.

count hi int32
Counter state of logical 1 in ms. Resets at the same time as count
lo resets.

count lo int32
Counter state of logical 0 in ms. Resets when duration lo is
reached.

Internal TCK int32 Origin of the counters count hi and count lo

When enable input is set to logical 0, generator is off all outputs are equal to zero. When enable input is set
to logical 1, generator is on, counters count hi and count lo count in turn from zero to duration hi, duration lo

values respectively. When count hi counts, output is 1, when count lo counts, output is 0.

count hi

enable

count lo

duration hi

output

duration lo

8.3.7.6 TON – On delay timer

 Signature Type Description

Inputs
start bool Trigger

delay int32 Duration of switching-on in ms

Outputs
output bool Set in 1, when the counter count reaches input delay.

count int32 Counter value in ms. Triggered by the start input.

Internal
old bool start value in the previous step

TCK int32 Origin of count counter

count

start

output

delay

43

8.3.7.7 TOFF – Off delay timer

 Signature Type Description

Inputs
start bool Trigger

delay int32 Duration of switching-off in ms

Outputs
output bool

Set in 1, by start input. Resets in 0, when counter CNT reaches
delay input.

count int32 Counter value in ms. Triggered at changing start input from 1 to 0.

Internal
old bool start value in the previous step

TCK int32 Origin of CNT counter

count

start

output

delay

8.3.7.8 RISING – rising edge detector

 Signature Type Description

Inputs input bool
When input goes from 0 to 1 for one cycle, output is set to logical
1.

Outputs output bool Output. Set in 1, when input changes from 0 to 1.

Internal old bool input value in the previous step

output = 𝑖𝑛𝑝𝑢𝑡 ⋀ 𝑜𝑙𝑑

start

output

8.3.7.9 FALLING – falling edge detector

 Signature Type Description

Inputs input bool
When input goes from 0 to 1 for one cycle, output is set to logical
1.

Outputs output bool Output. Set in 1, when input changes from 1 to 0.

Internal old bool input value in the previous step

output = 𝑜𝑙𝑑 ⋀ 𝑖𝑛𝑝𝑢𝑡

start

output

44

8.3.7.10 CNT – counter

 Signature Type Description

Inputs

inc bool
Incremental input.
When inc input goes from 0 to 1, counter count increases its value
by 1.

dec bool
Decremental input.
When dec input goes from 0 to 1, counter count decreases its value
by 1.

reset bool
Reset count.
When input reset is 1, counter count resets to zero.

threshold hi int32
High threshold.
When counter count reaches threshold hi value, output hi is set to
logical 1.

threshold lo Int32
Low threshold.
When count value is less threshold lo value, output lo is set to
logical 1.

Outputs

count int32 Counter value

hi bool Counter value count ≥ threshold hi

lo bool Counter value count ≤ threshold lo

Internal
inc old bool inc value in the previous step

dec old bool dec value in the previous step

inc

dec

reset

count

hi

lo

threshold lo

threshold hi

count = 0

45

8.3.7.11 RAND – random number generator

 Signature Type Description

Outputs output int32 pseudorandom number

8.3.7.12 PWM – PWM generator

 Signature Type Description

Inputs
duration int32 PWM pulse duration in ms

period int32 PWM period in ms

Outputs
output bool

Output. Equal to 1 when counter count is greater or equal to
duration.

count int32 PWM counter in ms. Counts from 0 to period-1
Internal tick int32 Origin of count counter

count

output

duration

period

46

8.3.8 Special functions

8.3.8.1 EVENT – event generator

 Signature Type Description

Inputs

generate bool
Event generation signal. When generate input goes from 0 to 1,
block generates an event.

force bool
Priority event. If parameter force is equal to true, then event will be
sent to the server with priority, otherwise the event will be sent
with general priority.

Settings

index uint8

Event number. There are 3 codes available, which will be
substituted in field #2 (event_code) of the FLEX protocol:

CE_EVT_1 - Event #41046;
CE_EVT_2 - Event #41047;
CE_EVT_3 - Event #41048.

format uint8
Packet format
(Currently feature is in development)

Internal old bool Signal value of event generation, on the previous cycle

- If a constant is connected to the generate input and its value is True, then the function works
in the “pressure signal” mode. On each execution, the function tries to generate an event.
- If a variable or output of another function is connected to the generate input, then the
triggering occurs when switching from False to True.

8.3.8.2 CMD – command from device

 Signature Type Description

Outputs

active bool Command receiving signal

param1 int32 Parameter 1

param2 int32 Parameter 2

param3 int32 Parameter 3

param4 int32 Parameter 4

param5 int32 Parameter 5

To receive parameters from a user or a monitoring system, there is a command provided, which device can

receive by USB, Bluetooth, SMS, Internet.
When command is received, device sets the active output to 1 for one cycle of block operation (later it will

be reset to 0).

Outputs paramX are set to the values of the last command received (outputs are reset to 0 when it is the
first run of Complex Events, or when the value 0 is received in a command).

Command format:

Request

*!CEVT<s><param1>[,<param2>,<param3>,<param4>,<param5>]
Пример:
*!CEVT 120,300 // It is allowed not to add the last values
*!CEVT 10,,,,200 // To skip intermediate it is needed to use commas

Respond *@CEVT

Exchange channel Internet, USB, Bluetooth, SMS

Signature Description Data format

<s> Delimiter – space (0x20) char

<param1>
Value set at param1 output. Text value is converted to I32 number.
Empty value is treated as 0.

char[]

<param2> Similar to the <param1> parameter, but for param2 char[]

<param3> Similar to the <param1> parameter, but for param3 char[]

<param4> Similar to the <param1> parameter, but for param4 char[]

<param5> Similar to the <param1> parameter, but for param5 char[]

47

8.3.8.3 FLEX – reading a value from FLEX table

Function was updated. The current implementation has been used from the editor version v3.4.1

 Signature Type Description

Outputs value int32 Value returned by block

Settings

index uint8 Number of the FLEX field from which it is needed to get the value.

offset uint8
Offset in bytes from the beginning of the field (some fields contain
several tens of bytes)

type uint8

Parameter type for reading:
uint8 – one-byte unsigned number;
int8 – one-byte signed number;
uint16 – two-byte unsigned number;
int16 – two-byte signed number;
int32/float – four-byte signed/real number.

The logic of the function depends on the data type:
- If a variable with the FLOAT type is connected to the output value and the parameter type
= int32/float, then the function reads data from memory according to the IEEE754 standard.
This method must be used for FLEX parameters that are stored in the Float format (For example,
the "speed" parameter)
- Otherwise, the function reads the data as an INT32 number. This method must be used for
FLEX parameters that are stored in any format other than Float.
The conversion is performed automatically using the FROM_FLOAT and TO_FLOAT functions.

8.3.8.4 USER_PARAM – writing a value to user parameter

 Signature Type Description

Input

value int32/float Value to be written to the corresponding user parameter

enable bool
Recording condition.
Input value is recorded, if enable = true, otherwise value is not
recorded.

Settings index uint8 Index of user parameter, to which the record will be made.

For block operation, transfer of the corresponding user parameter must be configured in the
device configuration. First, it is needed to place a block on the diagram, then (before compiling)
make changes to the configuration.
Configuration> Protocol Settings:
..> select «FLEX3.0»
..> User Parameters> Assign Parameters «User Parameter CEx».

The logic of the function depends on the data type:
- If a variable with the FLOAT type is connected to the input value, then the function writes
data to memory according to the IEEE754 standard. This method must be used for parameters
that will be read by the server in the Float format (For example, the number 12.016 should be
written this way). To send such a value to the server, you must use a user parameter of 4 bytes.
- Otherwise, the function writes the data as an integer number. This method must be used for
parameters that will be read by the server in Int or Uint format (For example, the number 43605
should be written this way). You can use a custom parameter of any size to send it to the server.
The conversion is performed automatically using the FROM_FLOAT and TO_FLOAT functions.

48

8.3.8.5 SMS – send SMS

 Signature Type Description

Input start bool
Signal about sending SMS. When input start value changes state
from 0 to 1, device starts sending SMS.

Output active bool
Execution. Output returns true until device makes a previous
attempt to send SMS.

Settings

user uint8 Subscriber number in the device memory.

type uint8 Message type

message string
Custom string to be added to the message, up to 32 characters
only.
NOT used if type = «Standard SMS».

Internal old bool start value on the previous cycle

If a constant is connected to the start input and its value is True, then the function works in the
“pressure signal” mode. On each execution, the function tries to send SMS.
If a variable or output of another function is connected to the start input, then the triggering
occurs when switching from False to True.

8.3.8.6 USER_SMS – send custom SMS

 Signature Type Description

Inputs

start bool Signal about sending SMS.

value0 int32/float Argument 0

value1 int32/float Argument 1

…

valueN-1 int32/float Argument N-1

Outputs active bool
Execution. The output value is true until the device makes an
ongoing attempt to send an SMS.

Settings

user string
A string with an arbitrary phone number or with a subscriber
number from the configuration.

message string

Message text. Arguments can be added to the message body.
Example:

Voltage is {0} V, Temperature is {1} *C

Internal old bool start value on the previous cycle

If a constant is connected to the start input and its value is True, then the function works in the
“pressure signal” mode. On each execution, the function tries to send SMS.
If a variable or output of another function is connected to the start input, then the triggering
occurs when switching from False to True.

8.3.8.7 RECV_SMS - SMS receipt indicator

 Signature Type Description

Output active bool
Signal about receiving SMS, that matched the message template
and checked against the flags conditions. The output for one cycle
of program execution is true.

Settings

phone string String with arbitrary phone number

message string Template text (up to 16 characters)

flags uint8 Checking options

49

8.3.8.8 CALL – make a call

 Signature Type Description

Input start bool
Signal to make a call. When input start value changes state from 0
to 1, device starts making calls.

Output active bool
Execution. Output returns true until device makes a previous
attempt to make a call.

Settings
user uint8 Subscriber number in the device memory

type uint8 Call type

Internal old bool start value on the previous cycle

If a constant is connected to the start input and its value is True, then the function works in the
“pressure signal” mode. On each execution, the function tries to make a call.
If a variable or output of another function is connected to the start input, then the triggering
occurs when switching from False to True.

8.3.8.9 CAM – make a picture

 Signature Type Description

Input start bool
When input start value changes state from 0 to 1, device takes a
picture.

Output active bool
Execution. Output returns true until device is generating and saving
the picture.

Internal old bool start value on the previous cycle

For block operation, device must be configured to work with the camera.
Configuration> RS-232 / RS-485> Use As> «Camera».

If a constant is connected to the start input and its value is True, then the function works in the
“pressure signal” mode. On each execution, the function tries to take a picture.
If a variable or output of another function is connected to the start input, then the triggering
occurs when switching from False to True.

50

8.3.8.10 GEOZONE – Geofence

 Signature Type Description

Input

latitude float Geofence center latitude (Example: 55.755669)

longitude float Geofence center longitude (Example: 37.616802)

radius float Geofence circle radius in meters

course int32 Direction of movement (course) to fix the entrance to the geofence

course delta int32
Entry angle range.
If course delta is set to 360, then control of course for entering the
geofence is not performed.

Output active bool true value, if the object is inside a geofence.

Settings speed min int16 Speed, below which the current course is not updated

Internal
current
course

int32 Current course

0 / 360

90

180

270

0 / 360

90

180

270

0 / 360

90

180

270

0 / 360

90

180

270

latitude, longitude radius course course delta

8.3.8.11 CALENDAR – calendar

 Signature Type Description

Input
UNIX time int32 Time in UNIX-time format.

timezone int32 Time zone. Integer number from -12 to 12.

Output

year int32 Year

month int32
Month number. Integer number from 1 tо 12.
For example: 1 –January etc.

day int32 Day of the month. Integer number from 1 to 31.

day of week int32
Day of the week. Integer number from 1 to 7.
For example: 1 – Monday etc.

hour int32 Hour. Integer number from 0 to 24.

min int32 Minute. Integer number from 0 to 59.

sec int32 Second. Integer number from 0 to 59.

Time in UNIX-time format is integer number, which is the number of seconds passed from
00:00:00 01.01.1970

This block converts time in UNIX-time format, taking into account the time zone, into more convenient for

use separate parameters: year, month, day and others.

To convert the current time of the device, it is needed to create FLEX block to obtain field No.3 [time] and

connect it to the UINX time input.

51

8.3.8.12 INFO – Information about device

 Signature Type Desription

Output

model int32 Numerical designation of the device model.

version int32
Firmware version of the device, represented as an integer number,
where the lower 2 digits are in the first byte, the middle 2 digits are
in the second byte and the higher 2 digits are in the third byte.

For example, device S-2435 with firmware v03.02.31:

model=2435
version=197151 (0x0003021F)

8.3.8.13 IMEI – Modem IMEI

 Signature Type Desription

Output
digits 8..0 int32 Number representing the lower 9 digits of the IMEI.

digits 14..9 int32 Number representing the higher 6 digits of the IMEI.

For example, IMEI 866795030518573:
digits 8..0 = 30518573

digits 14..9 = 866795

In the example for digits 8..0, not 030518573 is written, but 30518573. Extreme zeros on the
left are not displayed when displaying numeric values.

8.3.8.14 ICCID – SIM card ICCID

 Signature Type Desription

Input SIM index bool
SIM card slot number:

“0” - external;
“1” - internal.

Output
digits 8..0 int32 Number representing the lower 9 digits of the ICCID.

digits 16..9 int32 Number representing the higher 6 digits of the ICCID.

For example, ICCID 8970199201010570553:
digits 8..0 = 10570553
digits 16..9 = 70199201

In the example for digits 8..0, not 010570553 is written, but 10570553. Extreme zeros on the
left are not displayed when displaying numeric values.

The length of the ICCID number is usually 19 to 20 digits. The function allows you to get only the
lower 17 digits. The higher 2 digits for any SIM cards of ISO/IEC 7812-1 standard must be '89'.

52

8.3.8.15 IMSI – SIM card IMSI

 Signature Type Desription

Input SIM index bool
SIM card slot number:

“0” - external;
“1” - internal.

Output
digits 8..0 int32 Number representing the lower 9 digits of the IMSI.

digits 14..9 int32 Number representing the higher 6 digits of the IMSI.

For example, IMSI 250991039698855:
digits 8..0 = 39698855
digits 14..9 = 250991

In the example for digits 8..0, not 039698855 is written, but 39698855. Extreme zeros on the
left are not displayed when displaying numeric values.

The first three digits of the IMSI are the MCC (country code, for example, 250 - Russia). It is
followed by two or three digits MNC (mobile network code, for example, 99 - Beeline). All
subsequent digits are the MSIN user ID.

8.3.8.16 LOG_MSG – Send a message to the log

 Signature Type Desription

Inputs

send bool Message send signal.

value0 int32/float Argument 0

value1 int32/float Argument 1

…

valueN-1 int32/float Argument N-1

message string

Message text. Arguments can be added to the message body.
Example:

Voltage = {0} V, Temperature = {1} *C

Internal old bool start value on the previous cycle

This function outputs arbitrary text with arguments to the user log window of the NTC Configurator program.

To view the logs, in the main window of the NTC Configurator program, you should go to
"Advanced" > "Show log window" > set the "Complex Events" flag.

If a constant is connected to the send input and its value is True, then the function works in the
“pressure signal” mode. On each execution, the function tries to send a message.
If a variable or output of another function is connected to the send input, then the triggering
occurs when switching from False to True.

53

8.3.9 Peripheries

8.3.9.1 INPUT

 Signature Type Description

Inputs reset bool
Reset counter
(if the input is configured as a «pulse counter»)

Outputs

voltage int32
Voltage
(goes through a quick filtering by device algorithms)

value int32

Type of value depends on the input setting:
«Discrete» - trigger state 1 or 0;
«Analog» - voltage in mV (without filtering);
«Frequency» - frequency in Hz;
«Counting» - number of counted impulses.

Settings index uint8 Device input number

For block operation, in device configuration corresponding input must not be disconnected
Configuration> Inputs> Use as> Any value other than “Not Used”.

8.3.9.2 OUTPUT

 Signature Type Description

Inputs value int32

Output state to be set. The logic depends on the output setup.
“Of general purpose”

«1» - enable (short to ground)
«0» - disable.

“Buzzer” (only OUT_1):
The frequency (Hz) to be generated at the output.

Settings index uint8 Device output number

For block operation, in device configuration corresponding output must be configured in a certain
way.
Configuration > Outputs> Use as> “Of general purpose”.
For OUT_1 "Buzzer" setting is allowed.

Block operates in the «pressure signal» mode. At each execution, the block tries to set the state
of the output, which is specified by the input value.

8.3.9.3 HYGRO – hygrometer

 Signature Type Description

Outputs
temperature float Temperature, °C

humidity float Humidity, %

Settings Index uint8 Temperature/Humidity sensor number for displaying

54

8.3.9.4 ACCEL – accelerometer

 Signature Type Description

Outputs

x int32 Current acceleration along the X axis of the accelerometer

y int32 Current acceleration along the Y axis of the accelerometer

z int32 Current acceleration along the Z axis of the accelerometer

acc sqrt int32
Square root of the sum of the squares of the accelerations along each
axis

int sqrt int32 --
angle int32 Tilt angle relative to the local (temporary) vertical

pitch int32
Pitch angle:

forward tilt <0
backward tilt > 0

roll int32
Roll angle:

roll to the left <0
roll to the right > 0

calibrated bool Accelerometer calibration status (true - calibrated)

8.3.9.5 ECODRIVE – Eco Driving

 Signature Type Description

Outputs

speed int32 Current speed value

boost int32 Current acceleration value (after calibration)

retard int32 Current braking value (after calibration)

drift_right int32 Current value of acceleration to the right (after calibration)

drift_left int32 Current value of acceleration to the left (after calibration)

jump int32 Current value of vertical acceleration (after calibration)

belt int32 --

light int32 --

prm int32 --

For block operation, device must be configured to work with Eco Driving.
Configuration> EcoDriving> Enable driving quality control

8.3.9.6 ONEWIRE_KEY – Information about short-range current tag on the 1-Wire or RS-232/485 interfaces

 Signature Type Description

Outputs

lo int32 Low 4 bytes of code

hi int32 High 4 bytes of code

valid bool Code is in the list of device proxy codes

8.3.9.7 RFID – Information about long-range RFID current tag on the RS-232/485 interfaces

 Signature Type Description

Outputs

lo int32 Low 4 bytes of code

hi int32 High 4 bytes of code

pwr int32 Signal power

type int32 --

valid bool Code is in the list of device proxy codes

For block operation, device must be configured to work with RFID readers.
Configuration > RS-232/RS-485 > Device Х > “RFID tag reader”.

55

8.3.9.8 TACHOGRAPH – Tachograph driver

 Signature Type Description

Outputs

code0_3 int32 0 .. 3 bytes of card code

code4_7 int32 4 .. 7 bytes of card code

code8_11 int32 8 .. 11 bytes of card code

code12_15 int32 12 .. 15 bytes of card code

state int32 Driver state

type int32 --

active bool --

Settings index uint8 Driver number (1st or 2nd)

For block operation, device must be configured to work with tachograph.
Configuration > RS-232/RS-485 > Device Х > “Tachograph”.

8.3.9.9 GUARD – Security mode

 Signature Type Description

Inputs enable bool
Enable/disable security mode:

«0» – surveillance

«1» – security

Outputs

mode int32
Current operating mode:

«0» – surveillance
«1» – security

error int32

Error code when switching security mode:
«1» – security mode disabled in device configuration;
«2» – timeout not expired for switching mode ban;
«3» – mode enabled: do not enable security mode with running
ignition;
«4» – device is already in this mode;
«5» – mode enabled: do not enable security mode, if one of
security sensors triggered.

Settings type uint8

Type of switching of operating mode:
«By level» - at each execution, this block sets the operating
mode according to the value of the input;
«By rising edge» - at each execution, this block switches the
operating mode to the opposite if the state of the input has
changed from 0 to 1.

Internal old bool enable value on the previous cycle

For block operation, device must be configured to work with security functions.
Configuration > Security mode > “Use security modes”.

If the type of switching of operating mode is set “By level”, then this block works in “Pressure
signal” mode. At each execution, the block tries to set the state of the output, which is specified
by the input value.

56

8.3.9.10 CRASH_FILE – Accident file generating

 Signature Type Description

Inputs
generate bool On the rising edge, generate an accident file

unlock bool On a rising edge, release the overwrite lock

Outputs

active bool
The accident file is generated. The value true is set at the
beginning of file generating, the value false is set when the file
generating is completed.

time int32
Time of file creating in UNIX format
(0 – no accident file)

locked bool The value true is set if the file is protected from overwriting.

Internal
generate_old bool generate value on the previous cycle

unlock_old bool Unlock value on the previous cycle

For block operation, device must be configured to work with accident detection function.
Configuration > Accelerometer > Road accident detection > “Enable road accident detection …”

If a constant is connected to input generate and its value is True, then the function works in the
“pressure signal” mode. On each execution, the function tries to generate or unlock an accident
file.
If a variable or output of another function is connected to input generate, then the triggering
occurs when switching from False to True.

8.3.9.11 PWRSAVE – Energy saving control

 Signature Type Description

Inputs

gsm off bool

Disable GSM module power
If true, device will close all established Internet connections and
disable power of the GSM module.
If false, then GSM module is enabled.

gnss off bool
Disable GNSS module power
If true, device will power off the navigation module.
If false, then GNSS module is enabled.

battery off bool

Disable battery charge
If true, device will power off the back-up battery charging (but will
continue to be powered by it).
If false, back-up battery charging is enabled.

periph off bool

Disable periphery.
If true, device will power off the digital interfaces that can be
disabled.
If false, digital interfaces are enabled.

events off bool

Disable generating events
If true, device will prohibit generating events.
If false, generating events is performed in the normal mode in
accordance with the configuration.

Hidden sleep bool
Enter low power mode
(input is provided for the future functionality)

For block operation, device must be configured to work with Energy saving mode:
Configuration > System settings:
.. > Enable “Use energy saving mode”
.. > Select “… controlled by Complex Events”

57

8.3.10 Access Functions to Digital Ports

At operation with all digital ports, two buffers are used to receive and transmit data: RXD (receive buffer)
and TXD (transmit buffer).

Buffer sizes are fixed:

 RXD buffer - 128 bytes;
 TXD buffer - 64 bytes.

When debugging, buffers are shown as an array of bytes indexed from 0 to (buffer_size - 1) in the editor.

RXD buffer
128 bytes

TXD buffer
64 bytes

0 1 2

61 62 6360

30 1 2

125 126 127124

3

Send

Recieve

Data transmission process can be divided into several main stages:

 Write data to TXD buffer;
 Transmit data from the TXD buffer through the interface.

8.3.10.1 RS_SEND - Transmit data to serial port

 Signature Type Description

Inputs
start bool If true, the function attempts to transmit data.

send size int32 The number of bytes to transmit data through the interface.

Outputs state int32

Transmitter status:
“0” - no activity;
“1” - transmitting data;
“-1” – the interface is unavailable (not configured).

Settings port uint8 Selecting the digital interface.

The function transmits data through the serial interface port. For that data is taken from the TXD buffer from
position 0 to (send_size - 1).

For function operation, the appropriate interface must be configured in the device configuration.
Configuration > RS-232/RS-485 > Device 1 > “Complex Events (asynchronous mode)”.

58

Data reception process can be divided into several main stages:

 Receive data from the interface to RXD buffer;

 Read data from RXD buffer.

Unlike the data transmission, data receiving has not quite simple process. It is important to take into account
an important feature of data processing – the device can receive unlimited amount of data, but the RXD buffer
can store no more than 128 bytes. In this case, for one cycle of receive function execution, the device places

no more than 64 bytes of data from the interface into the RXD buffer.
If the device receives data larger than 128 bytes, the RXD buffer will overflow. On overflow, the RXD buffer

only stores the last 128 bytes of received data.
Therefore, if it is necessary to process data that exceeds 128 bytes, the program should be compiled in such

a way that after each cycle of the function for receiving data from the interface, the current contents of the RXD
buffer are processed. This approach will allow processing the entire required amount of data in several iterations.

Below is a visual representation of the process of receiving data, the volume of which slightly exceeds the
size of the RXD buffer:

1. The receive data function detects a new incoming data stream. On the first cycle, the function receives 64
bytes, increments the received data counter size by 64, and places the data in the RXD buffer, starting at index
0.

2. On the next cycle, the function receives another 64 bytes, increments the received data counter size by

64, and places the data in the RXD buffer, starting at index 64.

59

3. On the next cycle, the function receives the remaining data (X bytes), increments the received data
counter size by X. Erases the first X bytes in the RXD buffer. Shifts the contents of the RXD buffer X bytes "to

the left" (i.e. the byte at index X-1 will now be at index 0). Increases the overflow counter offset by X. Puts
data into the RXD buffer, starting at index (128-X).

8.3.10.2 RS_RECV - Receive data from serial port

 Signature Type Description

Inputs

enabled bool If true, the function expects input data from the interface.

reset Bool
If true, the function will clear the RXD buffer (all bytes will be set to
0x00) and the next data will be written starting at index 0.

Outputs

state int32

Receiver status:
“0” - reception is disabled;
“1” - waiting for data;
“2” - data reception;
“3” - data accepted;
“-1” - the interface is unavailable (not configured);

size int32
The size of the received data array. The received data is
immediately placed in the RXD buffer.

offset int32
The amount of data lost due to RXD buffer overflow (if more than
128 bytes are received). The buffer always contains the last 128
bytes of received data.

Settings

port uint8
The digital interface controlled by the function. If the selected
interface is not configured, the function will generate an error state
= -1.

timeout uint16

The time after receiving the last byte, after which it is considered
that the data reception is completed state = 3. The next data will
be considered new and will be written to the RXD buffer from index
0.

The function receives data through the serial interface port. When the function fixes the start of data

transmission (state = 1), then the first received bytes are copied to the RXD buffer, starting from index 0. In
one operation cycle, the function is able to receive 64 bytes from the interface. If the amount of incoming data
is more than 64 bytes, then the receiving process will be completed in several cycles (state = 2), while the

remaining data will be added to the RXD buffer starting from index 64. The function will fix the end of data
reception (state = 3), if after receiving the last byte timeout has expired. The next data will be considered new
and will be written to the RXD buffer at index 0.

For function operation, the appropriate interface must be configured in the device configuration.
Configuration > RS-232/RS-485 > Device 1 > “Complex Events (asynchronous mode)”.

60

As a special case of data exchange, there is a function for performing a request/response transaction. This
process can be divided into several main steps:

 Write data to TXD buffer;
 Transmit data from the TXD buffer through the interface;

 Receive data from the interface to the RXD buffer;
 Read data from RXD buffer.

8.3.10.3 RS_TRANS - Request/response via serial port

 Signature Type Description

Inputs

start bool If true, the function attempts to start a transaction.

send size int32 The size of the data array from the TXD buffer to transmit.

require size int32 The size of the expected response.

Outputs

ended bool
Transaction completion signal. The signal is not set if the interface
is not configured (state = -1).

state int32

Transaction status:
“0” - no activity;
“1” - waiting for access to the interface;
“2” - access to the interface is received;
“3” - transaction in progress;
“4” - transaction completed successfully;
“-1” - the interface is unavailable (not configured);
“-2” - the timeout for waiting for a response has expired;
“-3” - unknown error.

recv size int32
The size of the received data array. The received data is
immediately placed in the RXD buffer.

Settings

port uint8
The digital interface controlled by the function. If the selected
interface is not configured, the function will generate an error state
= -1.

timeout uint16
Time the function waits for a response after data transmission. If
the number of bytes ≤ require size is received within the allotted
time, then the transaction ends with the error state = -2.

The function sends data through the serial interface port. For sending, data is taken from the TXD buffer in

the range from 0 to (send size - 1). Next, the function waits for a response during the timeout time or until data
of length ≥ require size arrives in the RXD buffer.

For function operation, the appropriate interface must be configured in the device configuration.
Configuration > RS-232/RS-485 > Device X > “Complex Events (transaction)”.

61

To work with RXD and TXD buffers, there is a set of functions used to allow performance of basic read/write
and data conversion operations.

8.3.10.4 RXD_GET - Read value from RXD buffer

Function was updated. The current implementation has been used from the editor version v3.4.1

 Сигнатура Тип Описание

Inputs
index int32

The position in the RXD buffer from which to read. The very first
element of the buffer has index 0.

size int32
The number of bytes to read from the RXD buffer in the each
valueX output. Valid values are from 1 to 4.

Outputs

value0 int32/float The read value 0.

value1 int32/float The read value 1.

…

valueN-1 int32/float The read value N-1.

Settings

N uint8 Number of outputs value

endian uint8

The byte order to be used when copying buffer elements to output
value.
For example RXD = [01,02,03,04,05,...], index = 0, size = 4:
“Little-endian”

value = 0х04030201.
“Big-endian”

value = 0х01020304.
“Big-endian (2 bytes)”

value = 0х03040102.

sign bool
If the flag is set, then the function will treat the read data as a
negative number if the most significant bit is “1”.

The function performs sequential reading of the RXD buffer for each valueX output. Reading starts at the

index. The function reads size bytes and passes them to the valueX output. Then reading index is shifted by

size, after which reading is made for the next valueX output. As a result, a range of bytes from index to
(index+(size*N)-1) will be read from the buffer.

The logic of the function depends on the data type:
- If a variable with the FLOAT type is connected to the valueX output and size = 4, then the
function reads data from the buffer according to the IEEE754 standard. This method must be
used for values that are stored in the Float format (for example, the value 12.6).
- Otherwise, the function reads the data as INT32.
The conversion is performed automatically using the FROM_FLOAT and TO_FLOAT functions.

62

8.3.10.5 RXD_CMP - Data search in RXD buffer

 Signature Type Description

Input index int32
The position in the RXD buffer from which to search. The very first
element of the buffer has index 0.

Output result int32

Search results:
“≥0” - Data found, index of the buffer element immediately
following the found data sequence.
“-1” - Data not found.

Settings data bin
Sequence to search in the RXD buffer.
Specified in HEX “3120322033” or ASCII “1 2 3”.

Internal size uint8 The size of the data field.

Example:
If in RXD = [01,02,03,04,05,06...], index = 0, data = [0203], then value = 3

If in RXD = [01,02,03,04,05,06...], index = 2, data = [0203], then value = -1
If in RXD = [01,02,03,04,05,06...], index = 0, data = [3322], then value = -1

8.3.10.6 RXD_STR2INT - Convert string from RXD buffer to integer number

 Signature Type Description

Input index int32 The position in the RXD buffer where the INT value is located.

Output value int32
The read value.
If the value is not read, then value = 0

Starting at position index, the function attempts to read an INT value stored as an ASCII string.

Example:
Buffer RXD = [7a,67,2d,32,2e,36,66...]. In ASCII it is the string "zg-2.6f".

If index = 2 then value = -2
If index = 3 then value = 2
If index = 4 then value = 0

8.3.10.7 RXD_STR2FLOAT - Convert string from RXD buffer to float

 Signature Type Description

Input index int32 The position in the RXD buffer where the FLOAT value is located.

Output value int32
The read value.
If the value is not read, then value = 0

Starting at position index, the function attempts to read an FLOAT value stored as an ASCII string.

Example:

Buffer RXD = [7a,67,2d,32,2e,36,66...]. In ASCII it is the string "zg-2.6f".
If index = 2 then value = -2.6
If index = 3 then value = 2.6

If index = 4 then value = 0

63

8.3.10.8 RXD_CHECKSUM - Verify checksum in RXD buffer

 Signature Type Description

Input

index int32
Position in the RXD buffer, starting from which the calculation is
performed.

size int32 The length of the data array to calculate the CRC.

valued index int32
The position in the RXD buffer that contains the value against
which the computed CRC will be compared.

Output valid bool CRC check result.

Settings

type uint8

CRC calculation algorithm:
“CRC-16 (Modbus)”

Standart algorithm CRC-16 Modbus.
“CRC-8 (Maxim/Dallas)”

Standart algorithm CRC-8 Maxim/Dallas.
“XOR (8 bits)”

Sequential operation XOR.
“Sum (8 bits)”

Sequential addition of elements.

options uint8

“Byte order” - Byte order when comparing CRC (if calculated CRC
= 0x0201).

“Little-endian”
The value 0x0102 will be used.

“Big-endian”
The value 0x0201 will be used.

«Invert»
If the flag is set, then before comparing the CRC will be bit-wise
inverted. For example, if it was 0x0201, then it will be 0xfdfe.

«Add 1»
If the flag is set, then before comparing the CRC will be
increased by 1. For example, if it was 0x0201, then it will be
0x0202.

The function performs CRC calculation on RXD buffer starting from index to (index+size-1). The calculated
CRC is compared with the value stored in the RXD buffer starting at value index.

The operations "Byte Order", "Invert", "Add 1" are performed after the CRC calculation in turn in
the order of enumeration and affect the final value used in the comparison.

64

8.3.10.9 TXD_INIT - TXD buffer initialization

 Signature Type Description

Input enable bool If true, then the TXD buffer is initialized with user data.

Settings data bin
The sequence for initializing the TXD buffer.
Specified in HEX “3120322033” or ASCII “1 2 3”.

Internal size uint8 Number of bytes to be written to the TXD buffer.

The function fills the TXD buffer with data entered by the user, starting at index 0. If the length of the user

sequence is less than the length of the buffer, then the remaining cells are filled with 0x00.

8.3.10.10 TXD_SET - Write value to TXD buffer

Function was updated. The current implementation has been used from the editor version v3.4.1

 Signature Type Description

Inputs

enable bool If true, then the value is written to the buffer.

index int32 The position in the TXD buffer from which to write.

size int32
The number of bytes to be written to the buffer (from 1 to 4
bytes).

value0 int32/float The value 0 to write to the buffer.

value1 int32/float The value 1.

…

valueN-1 int32/float The value N-1

Settings

N uint8 Number pf outputs value

endian uint8

The byte order to be used when writing to the buffer.
For example TXD = [01,02,03,04,05,...], index = 1, size = 4, value
= 0x44332211:
“Little-endian”

After writing TXD = [01,11,22,33,44,...]
“Big-endian”

After writing TXD = [01,44,33,22,11,...]
“Big-endian (2 bytes)”

After writing TXD = [01,22,11,44,33,...]

The function writes the valueX from 1 to 4 bytes into the TXD buffer starting from index position. Unlike the

initialization function, this function is only applied to bytes in the range from index to (index+(size*N)-1).

The logic of the function depends on the data type:
- If a variable with the FLOAT type is connected to the value output and size = 4, then the
function writes data according to the IEEE754 standard. This method must be used for values
that are stored in the Float format (for example, the value 12.016).
- Otherwise, the function writes the data as an integer. This method must be used for values in
the formats Int or Uint (For example, this is how the number 43605 should be written).
The conversion is performed automatically using the FROM_FLOAT and TO_FLOAT functions.

65

8.3.10.11 TXD_CHECKSUM - Write checksum to TXD buffer

 Signature Type Description

Inputs

enable bool If true, the function performs CRC calculation.

index int32
Position in the TXD buffer, starting from which the calculation is
performed.

size int32 The length of the data array to calculate the CRC.

value index int32
The position in the TXD buffer from which the calculated CRC will
be written.

Settings

type uint8

CRC calculation algorithm:
“CRC-16 (Modbus)”

Standart algorithm CRC-16 Modbus.
“CRC-8 (Maxim/Dallas)”

Standart algorithm CRC-8 Maxim/Dallas.
“XOR (8 bits)”

Sequential operation XOR.
“Sum (8 bits)”

Sequential addition of elements.

options uint8

“Byte order” - Byte order when comparing CRC (if calculated CRC
= 0x0201).

“Little-endian”
The value 0x0102 will be written.

“Big-endian”
The value 0x0201 will be written.

“Invert”
If the flag is set, then before writing the CRC will be bit-wise
inverted. For example, if it was 0x0201, then it will be 0xfdfe.

“Add 1”
If the flag is set, then before writing the CRC will be increased
by 1. For example, if it was 0x0201, then it will be 0x0202.

The function performs CRC calculation on RXD buffer starting from index to (index+size-1). The calculated
CRC is compared with the value stored in the RXD buffer starting at value index.

The operations "Byte Order", "Invert", "Add 1" are performed after the CRC calculation in turn in
the order of enumeration and affect the final value used in the comparison.

66

8.3.10.12 TXD_GET - Read value from TXD buffer

Function was updated. The current implementation has been used from the editor version v3.4.1

 Signature Type Description

Inputs

index int32
The position in the TXD buffer from which to read. The very first

element of the buffer has index 0.

size int32
The number of bytes to read from the TXD buffer. Valid values
from 1 to 4.

Outputs value int32 | float The read value.

Settings

endian uint8

The byte order to be used when copying buffer elements to output
value.
For example RXD = [01,02,03,04,05,...], index = 0, size = 4:
«Little-endian»

value = 0х04030201.
«Big-endian»

value = 0х01020304.
«Big endian (2 bytes)»

value = 0х03040102.

sign bool
If the flag is set, then the function will treat the read data as a
negative number if the most significant bit is “1”.

The logic of the function depends on the data type:
If a variable with the FLOAT type is connected to the value output and size = 4, then the
function reads data from the buffer according to the IEEE754 standard. This method must be
used for values that are stored in the Float format (for example, the value 12.6).
- Otherwise, the function reads the data as INT32.
Conversion is performed automatically using the FROM_FLOAT and TO_FLOAT functions.

67

For the convenience of receiving and sending data via the ModBus protocol, special functions MODBUS_READ
and MODBUS_WRITE are provided, which are actually modified versions of RS_TRANS. The data exchange

process is greatly simplified in relation to the universal functions of data exchange, because the function itself
composes the request/command, controls the receipt of the response itself and parses the data itself.

8.3.10.13 MODBUS_READ – Reading data by Modbus RTU protocol

 Signature Type Description

Inputs enable bool Sending requests is allowed

Outputs

valid bool
True if the last request received a valid response and the valueX
outputs are relevant

state int32

State:
“0” – not active
“1” – waiting for access to the interface
“2” – access to the interface is received
“3” – transaction in progress
“4” – transaction completed successfully
“-1” – interface is unavailable (not configured)
“-2” – response timeout expired
“-3” – unknown error

value0 int32/float/bool The last read value 0.

value1 int32/float/bool The last read value 1

…

valueN-1 int32/float/bool The last read value N-1

Settings

N uint8 Number of outputs value

port uint8
The digital interface controlled by the function. If the selected
interface is not configured, the function will generate an error
state = -1.

period uint16
Resend request period if the true value is kept at the enable
input. Re-send is performed both in case of error and in case of
successful completion of the transaction.

timeout uint16
Time the function waits for a response after sending data. If the
correct response is not received, then the transaction ends with
an error state = -2.

function uint8 ModBus function to read data

number uint8 Network number of the polled sensor

address uint16 Requested data address

type uint8

Parameter type for reading:
uint8 – one-byte unsigned number;
int8 – one-byte signed number;
uint16 – two-byte unsigned number;
int16 – two-byte signed number;

int32/float – four-byte signed/real number.

endian uint8

The byte order to be used when copying buffer elements to
output value.
For example, data = [01,02,03,04], type = int32:
“Little-endian”

value = 0х04030201.
“Big-endian”

value = 0х01020304.
“Big-endian (2 bytes)”

value = 0х03040102.

Internal count int32 Internal timeout counter

68

For example, let us set up the function as follows:
Parameter Value

N 3

port RS-485

period 1000 ms

timeout 100 ms

function (03) Reading input registers

number 17

address 107 (0x6B)

type int16

endian Big-endian

Examples of a generated request and an expected response:
Request Response

Value
(HEX)

ModBus field name
Value
(HEX)

ModBus field name

11 Sensor network number 11 Sensor network number

03 Modbus function 03 Modbus function

00 First register address (Hi bytes) 06 Number of data bytes

6B First register address (Lo bytes) AE Register value 0x006B (Hi bytes)

00 Number of registers (Hi bytes) 41 Register value 0x006B (Lo bytes)

03 Number of registers (Lo bytes) 56 Register value 0x006C (Hi bytes)

76 CRC (Hi bytes) 52 Register value 0x006C (Lo bytes)

87 CRC (Lo bytes) 43 Register value 0x006D (Hi bytes)

 40 Register value 0x006D (Lo bytes)

 49 CRC (Hi bytes)

 AD CRC (Lo bytes)

Device will generate a request and try to send it via the RS-485 interface. After sending, the device will wait
for a response within 100 ms.

After receiving the data, the device will check the packet format for compliance with the ModBus protocol,
check the expected function and checksum. If all checks are passed, then the outputs will have the following

values:
valid =true
value0 = 0xAE41

value1 = 0x5652
value2 = 0x4340
If the answer is not received within the allotted time, then the previous values will remain at the valueX

outputs, the valid output will take the value false.
If the enable input remains true, then 1000 ms after the start of the previous transaction, the function will

repeat sending the request and parsing the response.

For function operation, the appropriate interface must be configured in the device configuration.
Configuration > RS-232/RS-485 > Device X > “Complex Events (transaction)”.

The logic of the function depends on the data type:
If a variable with the FLOAT type is connected to the value output and type = int32/float,
then the function reads data from the buffer according to the IEEE754 standard. This method
must be used for values that are stored in the Float format (for example, the value 12.6).
- Otherwise, the function reads the data as INT32.
Conversion is performed automatically using the FROM_FLOAT and TO_FLOAT functions.

The function uses universal buffers RXD и TXD

69

8.3.10.14 MODBUS_WRITE – Writing data via Modbus RTU protocol

 Signature Type Description

Inputs

enable bool Sending commands is allowed

value0 int32/float/bool The written value 0

value1 int32/float/bool The written value 1

…

valueN-1 int32/float/bool The written value N-1

Outputs

actual bool
True if the last command received a valid response and the
valueX inputs were successfully written

state int32

State:
“0” – not active
“1” – waiting for access to the interface
“2” – access to the interface is received
“3” – transaction in progress
“4” – transaction completed successfully
“-1” – interface is unavailable (not configured)
“-2” – response timeout expired
“-3” – unknown error

Settings

N uint8 Number of outputs value

port uint8

The digital interface controlled by the function. If the selected

interface is not configured, the function will generate an error
state = -1.

period uint16
Resend request period if the true value is kept at the enable
input. Re-send is performed both in case of error and in case of
successful completion of the transaction.

timeout uint16
Time the function waits for a response after sending data. If the
correct response is not received, then the transaction ends with
an error state = -2.

function uint8 ModBus function to write data

number uint8 Network number of the polled sensor

address uint16 Requested data address

type uint8

Parameter type for writing:
uint8 – one-byte unsigned number;
int8 – one-byte signed number;
uint16 – two-byte unsigned number;
int16 – two-byte signed number;

int32/float – four-byte signed/real number.

endian uint8

The byte order to be used when copying the values from the
valueX inputs to the command body.
For example, value = 0x01020304, type = int32/float:
“Little-endian”

TXD = [04,03,02,01]
“Big-endian”

TXD = [01,02,03,04]
“Big-endian (2 bytes)”

TXD = [03,04,01,02]

Internal count int32 Internal timeout counter

70

For example, let us set up the function as follows:
Parameter Value Input Value

N 1 value0 3

port RS-485

period 1000 ms

timeout 100 ms

function (06) Write one storage register

number 17

address 1 (0x01)

type uint8

endian Big-endian

Examples of a generated request and an expected response:
Command Response

Value
(HEX)

ModBus field name
Value
(HEX)

ModBus field name

11 Sensor network number 11 Sensor network number

06 Modbus function 06 Modbus function

00 First register address (Hi bytes) 00 First register address (Hi bytes)

01 First register address (Lo bytes) 01 First register address (Lo bytes)

00 Value to ser (Hi bytes) 00 Set value (Hi bytes)

03 Value to set (Lo bytes) 03 Set value (Lo bytes)

76 CRC (Hi bytes) 76 CRC (Hi bytes)

87 CRC (Lo bytes) 87 CRC (Lo bytes)

When sending a command to set one storage register, an echo is expected in response

The device will generate a command and try to send it via the RS-485 interface. After sending, the device
will wait for a response within 100 ms.

After receiving the data, the device will check the packet format for compliance with the ModBus protocol,

check the expected function and checksum. If all checks are passed, then the actual output will be set to true.
If no response is received within the allotted time, then the actual output will be set to false.
If the enable input remains true, then 1000 ms after the start of the previous transaction, the function will

repeat sending the command and parsing the response.

For function operation, the appropriate interface must be configured in the device configuration.
Configuration > RS-232/RS-485 > Device X > “Complex Events (transaction)”.

The logic of the function depends on the data type:
If a variable with the FLOAT type is connected to the value input and type = int32/float,
then the function writes data according to the IEEE754 standard. This method must be used for
values that are stored in the Float format (for example, the value 12.016).
- Otherwise, the function writes the data as an integer number. This method must be used for
values in the formats Int or Uint (For example, this is how the number 43605 should be written).
Conversion is performed automatically using the FROM_FLOAT and TO_FLOAT functions.

The function uses universal buffers RXD и TXD

	1. CHANGE HISTORY
	2. QUICK START
	3. PROGRAM INTERFACE APPEARANCE
	4. Creating and editing the program
	4.1 General information
	4.2 Description of elements in the Flowchart
	4.2.1 Start and End blocks
	4.2.2 Action block
	4.2.3 Condition block

	4.3 Creating a Flowchart
	4.4 Description of Functional Blocks Scheme Elements
	4.4.1 Constants and variables
	4.4.2 Function blocks

	4.5 Creating a Function block diagram
	4.6 Flowchart description elements
	4.6.1 Name and Description of the block
	4.6.2 Text
	4.6.3 Rectangle

	4.7 Undo/Redo
	4.8 Automatic numbering of function blocks
	4.9 Variables search
	4.10 Operation with files

	5. program BUILD
	6. program debug
	6.1 Start debugging
	6.2 Debugging for a running program
	6.3 Operation in debug mode
	6.3.1 Program status bar
	6.3.2 Controlling program execution
	6.3.3 Viewing diagram data values
	6.3.4 Execution time of the program loop

	6.4 Writing and reading a program without debugging

	7. SETTINGS
	7.1 Main
	7.2 Debug settings
	7.3 Color scheme

	8. Appendix
	8.1 Shortcut keys
	8.2 Event codes Complex Events
	8.3 Function block library
	8.3.1 Main operations
	8.3.1.1 NOP – no operation
	8.3.1.2 DELAY – delay
	8.3.1.3 MOVE - assigment
	8.3.1.4 MOVE_EN – condition assigment
	8.3.1.5 (deprecated) TO_FLOAT – convert int32(IEEE754) to float
	8.3.1.6 (deprecated) FROM_FLOAT – convert float to int32(IEEE754)

	8.3.2 Math operations
	8.3.2.1 ADD – addition
	8.3.2.2 SUB – subtraction
	8.3.2.3 MUL – multiplication
	8.3.2.4 DIV – division
	8.3.2.5 EXP – exponentiation
	8.3.2.6 MOD – modulo division
	8.3.2.7 ABS – absolute value
	8.3.2.8 SIGN – definition of sign
	8.3.2.9 SQRT – square root
	8.3.2.10 LN – natural logarithm
	8.3.2.11 LOG – common logarithm
	8.3.2.12 SIN – sine
	8.3.2.13 COS – cosine
	8.3.2.14 TAN – tangent
	8.3.2.15 ASIN – arcsine
	8.3.2.16 ACOS – arccosine
	8.3.2.17 ATAN – arctanangent

	8.3.3 Logical operations
	8.3.3.1 AND – locigal AND
	8.3.3.2 OR – logical OR
	8.3.3.3 XOR – logical exclusive OR
	8.3.3.4 NOT – logical NOT

	8.3.4 Bitwise operations
	8.3.4.1 BAND – bitwise AND
	8.3.4.2 BOR – bitwise OR
	8.3.4.3 BXOR – bitwise exclusive OR
	8.3.4.4 BNOT – bitwise NOT
	8.3.4.5 BSHL – bitwise left shift
	8.3.4.6 BSHR – bitwise right shift
	8.3.4.7 CODER – coder
	8.3.4.8 DECODER – decoder

	8.3.5 Relational operations
	8.3.5.1 EQ – equal
	8.3.5.2 NE – not equal
	8.3.5.3 GT – greater
	8.3.5.4 GE – greater or equal

	8.3.6 Selection and limit operations
	8.3.6.1 SEL – selection value
	8.3.6.2 MAX – maximum value
	8.3.6.3 MIN – minimum value
	8.3.6.4 LIMIT – limitation
	8.3.6.5 MUX – multiplexer
	8.3.6.6 DMUX – demultiplexer
	8.3.6.7 APPERTURE – Value change control
	𝑦=,,|𝑥−𝑥_𝑜𝑙𝑑|≥𝑑𝑒𝑙𝑡𝑎, 𝑡𝑟𝑢𝑒-𝑓𝑎𝑙𝑠𝑒..

	8.3.7 Triggers, generators, counters
	8.3.7.1 SR – Set-Reset trigger
	8.3.7.2 RS – Reset-Set trigger
	8.3.7.3 TT – Toggle (T-trigger)
	8.3.7.4 TP – one pulse generator
	8.3.7.5 BLINK – pulse generator
	8.3.7.6 TON – On delay timer
	8.3.7.7 TOFF – Off delay timer
	8.3.7.8 RISING – rising edge detector
	8.3.7.9 FALLING – falling edge detector
	8.3.7.10 CNT – counter
	8.3.7.11 RAND – random number generator
	8.3.7.12 PWM – PWM generator

	8.3.8 Special functions
	8.3.8.1 EVENT – event generator
	8.3.8.2 CMD – command from device
	8.3.8.3 FLEX – reading a value from FLEX table
	8.3.8.4 USER_PARAM – writing a value to user parameter
	8.3.8.5 SMS – send SMS
	8.3.8.6 USER_SMS – send custom SMS
	8.3.8.7 RECV_SMS - SMS receipt indicator
	8.3.8.8 CALL – make a call
	8.3.8.9 CAM – make a picture
	8.3.8.10 GEOZONE – Geofence
	8.3.8.11 CALENDAR – calendar
	8.3.8.12 INFO – Information about device
	8.3.8.13 IMEI – Modem IMEI
	8.3.8.14 ICCID – SIM card ICCID
	8.3.8.15 IMSI – SIM card IMSI
	8.3.8.16 LOG_MSG – Send a message to the log

	8.3.9 Peripheries
	8.3.9.1 INPUT
	8.3.9.2 OUTPUT
	8.3.9.3 HYGRO – hygrometer
	8.3.9.4 ACCEL – accelerometer
	8.3.9.5 ECODRIVE – Eco Driving
	8.3.9.6 ONEWIRE_KEY – Information about short-range current tag on the 1-Wire or RS-232/485 interfaces
	8.3.9.7 RFID – Information about long-range RFID current tag on the RS-232/485 interfaces
	8.3.9.8 TACHOGRAPH – Tachograph driver
	8.3.9.9 GUARD – Security mode
	8.3.9.10 CRASH_FILE – Accident file generating
	8.3.9.11 PWRSAVE – Energy saving control

	8.3.10 Access Functions to Digital Ports
	8.3.10.1 RS_SEND - Transmit data to serial port
	8.3.10.2 RS_RECV - Receive data from serial port
	8.3.10.3 RS_TRANS - Request/response via serial port
	8.3.10.4 RXD_GET - Read value from RXD buffer
	8.3.10.5 RXD_CMP - Data search in RXD buffer
	8.3.10.6 RXD_STR2INT - Convert string from RXD buffer to integer number
	8.3.10.7 RXD_STR2FLOAT - Convert string from RXD buffer to float
	8.3.10.8 RXD_CHECKSUM - Verify checksum in RXD buffer
	8.3.10.9 TXD_INIT - TXD buffer initialization
	8.3.10.10 TXD_SET - Write value to TXD buffer
	8.3.10.11 TXD_CHECKSUM - Write checksum to TXD buffer
	8.3.10.12 TXD_GET - Read value from TXD buffer
	8.3.10.13 MODBUS_READ – Reading data by Modbus RTU protocol
	8.3.10.14 MODBUS_WRITE – Writing data via Modbus RTU protocol

